

ADDITIONAL MATHEMATICS

Oct

Paper 2

October/November 2015
2 hours 30 minutes

Answer all the questions.

- 1 The curve y = f(x) is such that $f'(x) = 2e^x + e^{-2x}$.
 - (i) Explain why the curve y = f(x) has no stationary points. [2]
 - (ii) Given that the curve passes through the point (0, 2), find an expression for f(x). [4]
- 2 (i) Show that $\frac{d}{dx}(\ln(\cos x)) = -\tan x$. [2]
 - (ii) Differentiate x tan x with respect to x. [2]
 - (iii) Using the results from parts (i) and (ii), find $\int x \sec^2 x \, dx$ and hence show that $\int_0^{\frac{\pi}{4}} x \sec^2 x \, dx = \frac{\pi}{4} \frac{1}{2} \ln 2.$ [4]
- 3 The equation of a curve is $y = -x^2 + 4x 6$. The point P lies on the curve and has an x-coordinate of 1. The tangent to the curve at P meets the x-axis at A and the y-axis at B.
 - (i) Find the area of triangle AOB, where O is the origin. [6]

The point Q also lies on the curve. The normal to the curve at Q is parallel to the tangent to the curve at P.

- (ii) Find the coordinates of Q. [3]
- 4 (a) (i) Write down, and simplify, the first 4 terms in the expansion of $(1+x)^9$ in ascending powers of x.
 - (ii) Replacing x by $z-z^2$, determine the coefficient of z^3 in the expansion of $(1+z-z^2)^9$. [3]
 - **(b)** (i) Write down the general term in the binomial expansion of $\left(2x + \frac{1}{3x^3}\right)^{10}$. [1]
 - (ii) Write down the power of x in this general term. [1]
 - (iii) Hence, or otherwise, determine the coefficient of x^2 in the binomial expansion of

$$\left(2x + \frac{1}{3x^3}\right)^{10}$$
. [2]

Do not use a calculator in this question.

(i) Express $\frac{11\sqrt{3}}{2\sqrt{3}+1}$ in the form $a+b\sqrt{3}$, where a and b are integers. [2]

The diagram shows a cuboid with a square base. The height AB of the cuboid is $(\sqrt{3} + 1)$ cm.

Given that the length of the diagonal AC is $\frac{11\sqrt{3}}{2\sqrt{3}+1}$ cm,

- (ii) find an expression for BC^2 in the form $c + d\sqrt{3}$, where c and d are integers, [3]
- (iii) express the volume of the cuboid in the form $\frac{7}{2}(3\sqrt{3}+k)$ cm³, where k is an integer. [4]
- 6 The equation of a curve is $y = \frac{2x^2}{x-1}$.
 - (i) Find an expression for $\frac{dy}{dx}$ and obtain the coordinates of the stationary points of the curve. [5]
 - (ii) Find an expression for $\frac{d^2y}{dx^2}$ and hence determine the nature of these stationary points. [4]
- 7 The positive x- and y-axes are tangents to a circle C.
 - (i) What can be deduced about the coordinates of the centre of C? [1]

The line T is a tangent to C at the point (9, 8) on the circle. Given that the centre of C lies below and to the left of (9, 8), find

(ii) the equation of
$$C$$
, [5]

(iii) the equation of
$$T$$
. [3]

- 8 (i) Find the remainder when $2x^3 3x^2 5$ is divided by 2x + 1. [2]
 - (ii) Factorise completely the cubic polynomial $2x^3 3x^2 + 1$. [4]
 - (iii) Express $\frac{4-5x-8x^2}{2x^3-3x^2+1}$ as the sum of 3 partial fractions. [4]

A farmer fences part of his land. He puts fences around the perimeter of the triangular field ABC and also from B to D, where D is the mid-point of AC. Angle BAC = angle BCA = θ radians and the lengths of AB and BC are 80 m.

- (i) Show that Lm, the length of fencing needed, can be expressed in the form $p + q \sin \theta + r \cos \theta$, where p, q and r are constants to be found. [3]
- (ii) Express L in the form $p + R \sin(\theta + \alpha)$, where R > 0 and α is an acute angle. [4]
- (iii) Given that the farmer uses exactly 310 m of fencing, find the value of θ . [3]
- 10 The roots of the quadratic equation $2x^2 6x + 5 = 0$ are α and β .

(i) Find the value of
$$\alpha^2 + \beta^2$$
. [3]

(ii) Show that the value of
$$\alpha^3 + \beta^3$$
 is $\frac{9}{2}$. [2]

- (iii) Find a quadratic equation whose roots are $\alpha^2 + \beta$ and $\alpha + \beta^2$. [5]
- A cuboid of volume $V \text{cm}^3$ has a height of x cm and a rectangular base of area $(px^2 + q)$ cm². Corresponding values of x and V are shown in the table below.

x	5	10	15	20
V	175	650	1725	3700

- (i) Using suitable variables, draw, on graph paper, a straight line graph and hence estimate the value of each of the constants p and q. [6]
- (ii) Using your values of p and q, calculate the value of x for which the cuboid is a cube. [2]
- (iii) Explain how another straight line drawn on your diagram can lead to an estimate of the value of x for which the cuboid is a cube. Draw this line and hence verify your value of x found in part (ii).

ADDITIONAL MATHEMATICS Paper 1

4047/01

October/November 2014

Answer all the questions.

- 1 Find the value of k for which the coefficient of x^3 in the expansion of $(2-kx)^5 + (3+x)^6$ is 860. [5]
- The acute angles A and B are such that tan(A + B) = 8 and tan B = 3. Without using a calculator, find the exact value of sin A.
- A particle moves along the curve $y = 2 \frac{1}{x^2}$ in such a way that the y-coordinate of the particle is increasing at a constant rate of 0.03 units per second. Find the y-coordinate of the particle at the instant that the x-coordinate of the particle is increasing at 0.12 units per second. [5]
- 4 Express $\frac{(x+2)^2}{x^2(x-2)}$ as the sum of 3 partial fractions. [6]
- An experiment in Physics to find the focal length, f m, of a lens, requires the student to place an object at a distance, u m, from the lens and to record the distance, v m, at which the image is seen on the other side of the lens. The table below shows some results.

и	0.150	0.200	0.250	0.300
v	0.603	0.299	0.263	0.201

It is known that u, v and f are related by the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$. It is believed that an error was made in recording one of the values of v.

- (i) Plot $\frac{1}{v}$ against $\frac{1}{u}$ and hence determine which value of v, in the table above, is the incorrect recording.
- (ii) Draw the straight line graph and use it to estimate a value of ν to replace the incorrect recording of ν found in part (i).
- (iii) Estimate the value of f. [2]
- 6 (i) Prove that $\frac{1}{(1+\csc\theta)(\sec\theta-\tan\theta)} = \tan\theta$. [4]
 - (ii) Find, in radians, the acute angle for which $\frac{1}{(1 + \csc \theta)(\sec \theta \tan \theta)} = 3 \cot \theta.$ [2]

(2014)1
OL Additional Mathematics

(2015)6
OL Additional Mathematics