Introducción al lenguaje algebraico

- * La aritmética se ocupa de las operaciones con números. El álgebra se ocupa de las operaciones con símbolos.
- * El álgebra es muy antigua. Griegos y babilonios hacían razonamientos algebraicos.
 - Los matemáticos de la Edad Media hablaban de "la cosa" (para referirse a la incógnita).
- * En el siglo XVI se introducen los símbolos modernos.

Introducción al lenguaje algebraico

* Permite enunciar propiedades generales: Para cualesquiera a y b, se cumple que a+b=b+a.

* Permite razonar sobre cantidades desconocidas, estableciendo relaciones entre ellas:

Juan se ha presentado a un concurso en preguntas. Le daban 150 euros de se puesta acertada, y le restaban 60 er si no podía dejar preguntas en blar se cuántas respuer

inpular expresiones como la anterior (cones) y encontrar las soluciones.

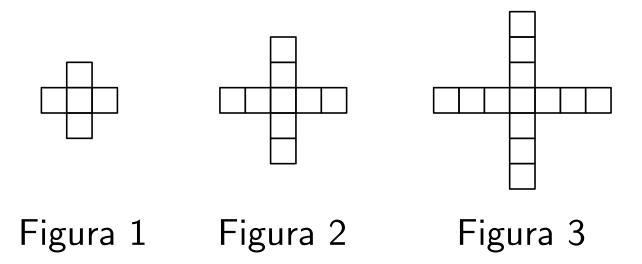
Álgebra - Aritmética

- * Lucía abrió su hucha, se gastó la mitad del dinero en un libro, y luego se compró un helado que le costó 2 euros. Si le sobraron 7 euros, ¿cuánto dinero tenía en la huc' ?
- * Resolver problemas sin los recursos del álør' 100 importante para entender la aritmética.

 Lo pediré con frecuencia.
- * También a la hora de será útil consideration de la hora de la ho

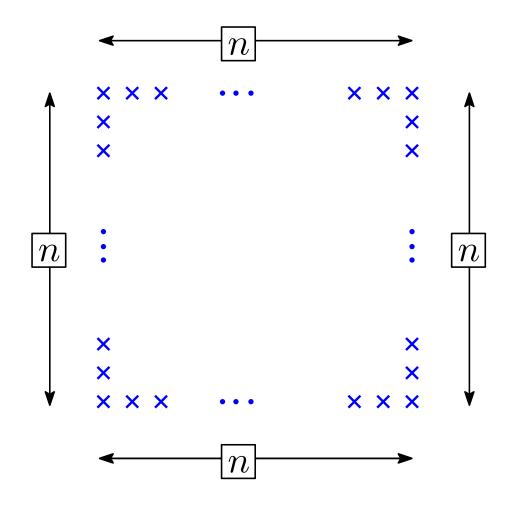
Ejemr' s que la suma de dos números rero par.

- 1. un argumento que muestre que esto es cierto, y que se le pueda presentar a un niño de 3º de Primaria.
- 2. Escribe una demostración usando el lenguaje algebraico.


Ejercicios

- 1. Escribe tres números pares consecutivos "genéricos".
- 2. Usando el ejercicio anterior, demuestra que la suma de tres números pares consecutivos es siempre múltiple
- 3. Que sean pares no es importante. Francisco múltiplos de 17 consecutivos " uestra que su suma es siempre múl+
- 4. Si un número por otro número cualquiera, el result número par.
 - jumento que muestre que esto es cierto, y pueda presentar a un niño de 3º de Primaria.
 - b) 🗕 scribe una demostración usando el lenguaje algebraico.

El lenguaje algebraico y los patrones


- * Observa y busca alguna regularidad:
 - \diamond 1+3=4
 - \diamond 1+3+5=9
 - \diamond 1+3+5+7=16
 - \diamond 1+3+5+7+9=25
- * Exprésala en lenguaje usual
- * Exprésala en lenguaje algebraico

El lenguaje algebraico y los patrones

- 1. ¿Cuántos cuadraditos tiene la figura 8?
- 2. ¿Cuántos cuadraditos tiene la figura n?

El lenguaje algebraico y los patrones

* Piensa varias formas de contar las cruces que hay en la figura y escribe la expresión algebraica resultante de cada una.

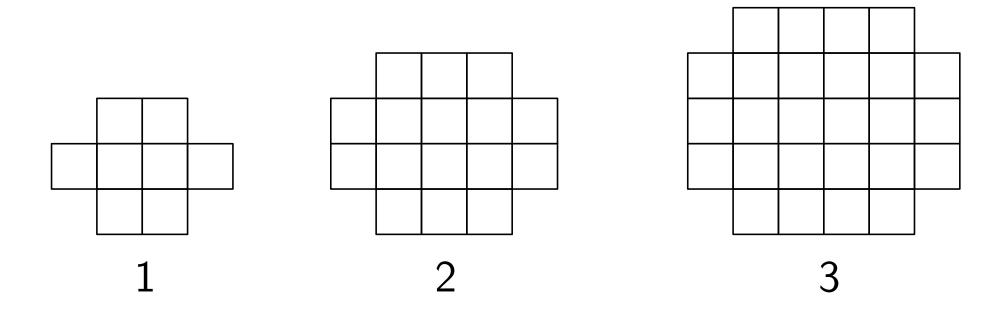
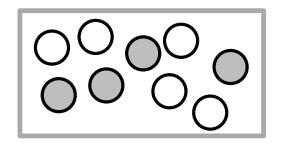
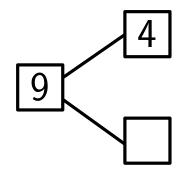
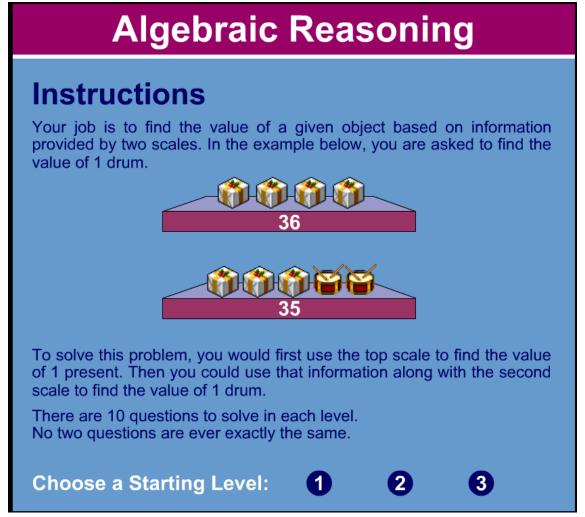




Fig 50? Fig n?

En los primeros cursos de primaria

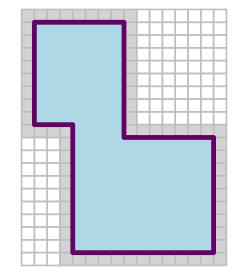
$$*$$
 $4 = 9 -$

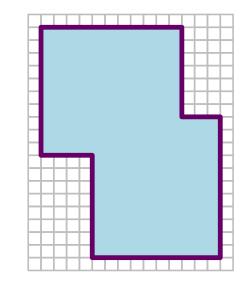

Partes-todo

* Se pueden ir complicando progresivamente:

$$2 \times \boxed{} + 3 = 11$$

Debería ser un tema transversal


* El razonamiento algebraico se puede trabajar en muchos temas



http://www.mathplayground.com/algebraic_reasoning.html

Problemas

* En las piscinas de la figura se quiere hacer un pasillo alrededor (como el gris de la figura de la izquierda). ¿Cuántas baldosas se necesitarán?

* Repite el problema para piscinas de una forma similar, si las dimensiones del rectángulo son base a y altura b.

Problemas

- * Tenemos un cubo como el de Rubik formado por $3 \times 3 \times 3$ cubitos iguales. Pintamos el exterior, y luego lo desmontamos.
 - 1. ¿Cuántos cubos tienen 3 caras pintadas?
 - 2. ¿Cuántos cubos tienen 2 caras pintadas?
 - 3. ¿Cuántos cubos tienen 1 cara pintada?
 - 4. ¿Cuántos cubos no tienen ninguna cara pintada?
- * Repite el problema con un cubo $10 \times 10 \times 10$ y con un cubo $n \times n \times n$.