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Abstract

Around 1958, Hill described how to draw the complete graph Kn with

Z (n) :=
1

4

⌊n

2

⌋

⌊

n− 1

2

⌋⌊

n− 2

2

⌋ ⌊

n− 3

2

⌋

crossings, and conjectured that the crossing number cr(Kn) of Kn is exactly Z(n).
This is also known as Guy’s conjecture as he later popularized it. Towards the end
of the century, substantially different drawings of Kn with Z(n) crossings were found.
These drawings are 2-page book drawings, that is, drawings where all the vertices are
on a line ℓ (the spine) and each edge is fully contained in one of the two half-planes
(pages) defined by ℓ. The 2-page crossing number of Kn, denoted by ν2(Kn), is the
minimum number of crossings determined by a 2-page book drawing of Kn. Since
cr(Kn) ≤ ν2(Kn) and ν2(Kn) ≤ Z(n), a natural step towards Hill’s Conjecture is the
weaker conjecture ν2(Kn) = Z(n), popularized by Vrt’o. In this paper we develop
a new technique to investigate crossings in drawings of Kn, and use it to prove that
ν2(Kn) = Z(n). To this end, we extend the inherent geometric definition of k-edges
for finite sets of points in the plane to topological drawings of Kn. We also introduce
the concept of ≤≤k-edges as a useful generalization of ≤k-edges and extend a powerful
theorem that expresses the number of crossings in a rectilinear drawing of Kn in terms
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of its number of ≤k-edges to the topological setting. Finally, we give a complete
characterization of crossing minimal 2-page book drawings of Kn and show that, up to
equivalence, they are unique for n even, but that there exist an exponential number of
non homeomorphic such drawings for n odd.
Keywords: Crossing number, Topological drawing, Complete graph.

1 Introduction

In a drawing of a graph in the plane, each vertex is represented by a point and each edge
is represented by a simple open arc (i.e., the image of an open interval in the plane, say
{(x, 0) : 0 < x < 1}, under a homeomorphism of the plane), such that if uv is an edge, then
the closure (in the plane) of the arc α representing uv consists precisely of α and the points
representing u and v. It is further required that no arc representing an edge contains a point
representing a vertex and that any two edges intersect only finitely many times. A crossing
in a drawing D of a graph G is a pair (x, {α, β}), where α, β are arcs representing different
edges and {x} ∈ α ∩ β is a point in the plane where α and β intersect transversally1. The
crossing number cr(D) of D is the number of crossings in D, and the crossing number cr(G)
of G is the minimum cr(D), taken over all drawings D of G.

A drawing is good if (i) no three distinct arcs representing edges meet at a common point;
(ii) if two edges are adjacent, then the arcs representing them do not intersect each other;
and (iii) an intersection point between two arcs representing edges is a crossing. It is well-
known (and easy to prove) that every graph has a crossing-minimal drawing which is good
(moreover, (ii) and (iii) hold in every crossing-minimal drawing). Thus, when our aim (as in
this paper) is to estimate the crossing number of a graph, we may assume that all drawings
under consideration are good. As usual, for simplicity we often make no distinction between
a vertex and the point representing it, or between an edge and the arc representing it. No
confusion should arise from this practice.

Around 1958, Hill conjectured that

cr(Kn) = Z(n) :=
1

4

⌊n

2

⌋

⌊

n− 1

2

⌋⌊

n− 2

2

⌋⌊

n− 3

2

⌋

. (1)

This conjecture appeared in print a few years later in papers by Guy [17] and Harary and
Hill [19]. Hill described drawings of Kn with Z(n) crossings, which were later corroborated
by Blažek and Koman [8]. These drawings show that cr(Kn) ≤ Z(n). The best known
general lower bound is limn→∞ cr(Kn)/Z(n) ≥ 0.8594, due to de Klerk et al. [15]. For more
on the history of this problem we refer the reader to the excellent survey by Beineke and
Wilson [6].

1We say that α and β intersect transversally (or tangentially, respectively) at x if there exists a disk D

such that the two connected components of (D ∩ β) \ {x} are in different (the same, respectively) connected
components of D \ α.
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One of the major motivations for investigating crossing numbers is their application to
VLSI design. With this motivation in mind, Chung, Leighton and Rosenberg [11] analyzed
embeddings of graphs in books. We recall that a book consists of a line (the spine) and
k ≥ 1 half-planes (the pages), such that the boundary of each page is the spine. In a
book embedding, every vertex lies on the spine, and each edge lies on a single page. Book
embeddings of graphs have been extensively studied [7, 16]. Now if the book has k pages,
and crossings among edges are allowed, the result is a k-page book drawing.

Here we concentrate on 2-page book drawings. The 2-page crossing number ν2(G) of a
graph G is the minimum of cr(D) taken over all 2-page book drawings D of G. As in the
general case, it can be proven that this minimum is achieved by good 2-page book drawings.
Alternative terminologies for the 2-page crossing number are circular crossing number [20]
and fixed linear crossing number [12]. We may regard the pages as the closed half-planes
defined by the spine, and so every 2-page book drawing can be realized as a plane drawing;
it follows that cr(G) ≤ ν2(G) for every graph G.

In 1964, Blažek and Koman [8] found 2-page book drawings of Kn with Z(n) crossings,
thus showing that ν2(Kn) ≤ Z(n) (see also Guy et al. [18], Damiani et al. [13], Harborth
[20], and Shahrokhi et al. [23].) Once these constructions were known, the conjecture that
ν2(Kn) = Z(n) is implicit in the conjecture given by Equation (1) since cr(Kn) ≤ ν2(Kn).
However, the only explicit reference to this weaker conjecture is, as far as we know, from
Vrt’o [24].

Buchheim and Zhang [9] reformulated the problem of finding ν2(Kn) as a maximum cut
problem on associated graphs, and then solved exactly this maximum cut problem for all
n ≤ 13, thus confirming Equation (1) for 2-page book drawings for all n ≤ 14 (the case
n = 14 follows from the case n = 13 by an elementary counting argument). Very recently,
De Klerk and Pasechnik [14] used this max cut reformulation to find the exact value of ν2(Kn)
for all n ≤ 21 and n = 24, and moreover, by using semidefinite programming techniques, to
obtain the asymptotic bound limn→∞ ν2(Kn)/Z(n) ≥ 0.9253. All the results reported in [9]
and [14] are computer-aided.

In this paper we prove that ν2(Kn) = Z(n). The main technique for the proof is the exten-
sion of the concept of k-edge of a finite set of points to topological drawings of the complete
graph. We do this in a way such that the identities proved by Ábrego and Fernández-
Merchant [4] and Lovász et al. [22], that express the crossing number of a rectilinear drawing
of Kn in terms of the k-edges or the ≤k-edges of its set of vertices, are also valid in the
topological setting.

We recall that a drawing D is rectilinear if the edges of D are straight line segments, and
the rectilinear crossing number cr(G) of a graph G is the minimum of cr(D) taken over all
rectilinear drawings D of G. Although the exact value of cr(Kn) is known only for n ≤ 27
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and n = 30 [2, 10], there are fairly good estimates of its asymptotic behavior (cf. [2, 3]):

0.379972 <
277

729
≤ lim

n→∞

cr(Kn)
(

n
4

) ≤
83 247 328

218 791 125
< 0.380488.

For a survey on the rectilinear crossing number of Kn, we refer the reader to [5].

The remarkable recent progress on the estimation of cr(Kn) has been prompted by the
close relationship between this parameter and the number of k-edges in a rectilinear drawing
of Kn. An edge pq of D is a k-edge if the line spanned by pq divides the remaining set of
vertices into two subsets of cardinality k and n−2−k. Thus a k-edge is also an (n−2−k)-
edge. Denote by Ek(D) the number of k-edges of D and let E≤k(D) =

∑k
j=0Ej(D). The

following identity [4, 22] has been key to the recent developments on the rectilinear crossing
number of Kn.

cr (D) = 3

(

n

4

)

−

⌊n/2⌋−1
∑

k=0

k (n− 2− k)Ek (D) . (2)

In Section 2 we generalize the concept of k-edge to arbitrary (that is, not necessarily
rectilinear) good drawings of Kn, and Theorem 2 extends Equation (2) to these drawings.
Although half-planes are not well defined for arbitrary good drawings of Kn, we can use the
orientation of the triangles defined by three points: the edge pq is a k-edge of the topological
drawing if the set of triangles adjacent to pq is divided, according to their orientation, into
two subsets with cardinality k and n − k − 2. It was proved by Ábrego and Fernández-
Merchant [4] and by Lovász et al. [22] that the inequality E≤k (D) ≥ 3

(

k+2
2

)

holds for every
rectilinear drawing D of Kn. This inequality and (2) imply that cr(Kn) ≥ Z(n) [4]. In
contrast to the rectilinear case, the inequality E≤k (D) ≥ 3

(

k+2
2

)

does not hold in general for
topological drawings D of Kn, not even for 2-page book drawings, as can be seen in Figure 4.
This shows the relevance of introducing the new parameter E≤≤k (D), which we bound from
below in Theorem 8. In Section 3 we use Theorems 8 and 2 to show that ν2(Kn) = Z(n).

Two drawingsD andD′ are plane-homeomorphic if there is a homeomorphism of the plane
that sends D to D′. Typically, drawings on the plane are seen as drawings on the sphere
under the one-point compactification of the sphere. In this context, when the drawings D
and D′ on the plane correspond to the drawings DS and D′

S on the sphere, we say that D and
D′ are sphere-homeomorphic if there is a homeomorphism of the sphere that sends DS to D′

S.
For crossing number purposes, it is enough and natural to consider sphere-homeomorphic
drawings. However, it is impossible to define k-edges for drawings of the complete graph
on the sphere (the way we do it on the plane) because it is impossible to orient simple
closed curves on the sphere. Therefore, we use plane-homeomorphic drawings in Sections 2
and 3 to prove that ν2(Kn) = Z(n), and sphere-homeomorphic drawings to analyze the
crossing optimal 2-page drawings of Kn in Section 4. We give a complete characterization
of their structure, showing that, up to sphere-homeomorphism, crossing optimal drawings
are unique for n even. In contrast, for n odd we provide a family of size 2(n−5)/2 of non
sphere-homeomorphic crossing optimal drawings. We conclude with some open questions
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and directions for future research in Section 5. An extended abstract of this paper appeared
in SoCG [1].

2 Crossings and k-edges

In this section we generalize the concept of k-edges and extend Equation (2) to the topological
setting. So far this concept has only been used in the geometric setting of finite sets of points
in the plane. Here, we extend it to topological drawings of Kn. Let D be a good drawing
of Kn, let

−→pq be a directed edge of D, and r a vertex of D other than p or q. We denote
by pqr the oriented, closed curve defined by concatenating the (oriented) edges pq, qr and
rp. Note that pqr is simple because the three edges pq, qr, and rp do not self intersect and
do not intersect each other, since D is good. An oriented, simple, and closed curve in the
plane is oriented counterclockwise if the bounded region it encloses is on the left hand side
of the curve. We say that r is on the left (respectively, right) side of −→pq if pqr is oriented
counterclockwise (respectively, clockwise). We say that the edge pq is a k-edge of D if it
has exactly k points of D on one side (left or right), and thus n− 2− k points on the other
side. Hence, as in the geometric setting, a k-edge is also an (n − 2 − k)-edge. Note that
the direction of the edge pq is no longer relevant and every edge of D is a k-edge for some
unique k such that 0 ≤ k ≤ ⌊n/2⌋ − 1. Let Ek(D) be the number of k-edges of D.

First we show that there are essentially 3 topological good drawings of K4.

Lemma 1. Any good drawing of K4 in the plane is plane-homeomorphic to one of the three
drawings shown in Figure 1.

Proof. We first observe that in a good drawing of K4 there is at most one crossing. Let p, q,
r, and s be the vertices and assume that the edges pr and qs cross at x. The edge rs cannot
intersect the edge pq because pqx is a closed curve and the drawing is good. Similarly, the
edge qr does not intersect the edge ps, and the other possible pairs of edges share a vertex
and thus their corresponding arcs do not intersect because the drawing is good. Thus, in a
good drawing of K4 there is always a hamiltonian cycle of non crossed edges: if we suppose
that the only possible crossing is between the edges pr and qs, then pq, qr, rs and sp form
such a cycle, and if there are no crossings, then these edges form the cycle as well. Finally,
once this cycle is drawn, there are only three possibilities to draw the edges pr and qs: both
in the bounded face, both in the unbounded face, or one in each face. These correspond to
the three drawings in Figure 1. Clearly Drawing A is not plane-homeomorphic to the other
two because it has no crossings. To see that Drawings B and C are not plane-homeomorphic
note that a homeomorphism of the plane taking one drawing to the other would need to map
the closure of the bounded face (a compact set) to the closure of the unbounded face, which is
impossible. However, we note that Drawings B and C are indeed sphere-homeomorphic.
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Figure 1: The three non plane-homeomorphic good drawings of K4, with 3, 2, and 2 separa-
tions. The edge of each separation is shown bold.

We now extend Equation (2) to the topological case.

Theorem 2. For any good drawing D of Kn in the plane the following identity holds,

cr (D) = 3

(

n

4

)

−

⌊n/2⌋−1
∑

k=0

k (n− 2− k)Ek (D) .

Proof. In a good drawing of Kn, we say that an edge pq separates the vertices r and s if
the orientations of the triangles pqr and pqs are opposite. In this case, we say that the set
{pq, r, s} is a separation.

We denote by TA, TB, and TC the number of induced subdrawings of D of type A, B, and
C, respectively. Then

TA + TB + TC =

(

n

4

)

, (3)

and since the subdrawings of types B or C are in one-to-one correspondence with the cross-
ings of D, it follows that

cr (D) = TB + TC . (4)

We count the number of separations in D in two different ways: First, each subdrawing
of type A has 3 separations (the edge in each separation is bold in Figure 1), and each
subdrawing of types B or C has 2 separations. This gives a total of 3TA + 2TB + 2TC

separations in D. Second, each k-edge belongs to exactly k(n−2−k) separations. Summing

over all k-edges for 0 ≤ k ≤ ⌊n/2⌋−1 gives a total of
∑⌊n/2⌋−1

k=0 k(n−2−k)Ek(D) separations
in D. Therefore

3TA + 2TB + 2TC =

⌊n/2⌋−1
∑

k=0

k (n− 2− k)Ek(D). (5)

Finally, subtracting Equation (5) from three times Equation (3) we get

TB + TC = 3

(

n

4

)

−

⌊n/2⌋−1
∑

k=0

k (n− 2− k)Ek(D),

and thus by Equation (4) we obtain the claimed result.
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In order to prove ν2(Kn) = Z(n), we need to rewrite the expression in the previous
theorem. For 0 ≤ k ≤ ⌊n/2⌋− 1 and D a good drawing of Kn, we define the set of ≤k-edges
of D as all j-edges in D for j = 0, . . . , k. The number of ≤k-edges of D is denoted by

E≤k (D) :=
k

∑

j=0

Ej (D) .

Similarly, we denote the number of ≤≤k-edges of D by

E≤≤k(D) :=

k
∑

j=0

E≤j (D) =

k
∑

j=0

j
∑

i=0

Ei (D) =

k
∑

i=0

(k + 1− i)Ei (D) .

To avoid special cases we define E≤≤−1(D) = E≤≤−2(D) = 0.

The following result restates Theorem 2 in terms of the number of ≤≤k-edges. In the
next section, we bound E≤≤k(D) from below for 2-page book drawings D of Kn.

Proposition 3. Let D be a good drawing of Kn. Then

cr(D) = 2

⌊n/2⌋−2
∑

k=0

E≤≤k(D)−
1

2

(

n

2

)⌊

n− 2

2

⌋

−
1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D).

Proof. First note that for 2 ≤ k ≤ ⌊n/2⌋−1 we have that E≤≤k(D)−E≤≤k−1(D) = E≤k(D)
and E≤k(D)− E≤k−1(D) = Ek(D). Thus

Ek (D) = E≤≤k (D)− 2E≤≤k−1 (D) + E≤≤k−2 (D) .

Note that this equation also holds for k = 0 and k = 1. We now rewrite the last term in
Theorem 2 as follows.

⌊n/2⌋−1
∑

k=0

k(n− 2− k)Ek(D)

=

⌊n/2⌋−1
∑

k=0

k(n− 2− k)[E≤≤k(D)− 2E≤≤k−1(D) + E≤≤k−2(D)]

=

⌊n/2⌋−3
∑

k=0

(k(n− 2− k)− 2(k + 1)(n− 3− k) + (k + 2)(n− 4− k))E≤≤k(D)

+
(⌊n

2

⌋

− 1
)(

n− 1−
⌊n

2

⌋)

E≤≤⌊n/2⌋−1(D) + (−2
(⌊n

2

⌋

− 1
)(

n− 1−
⌊n

2

⌋)

+
(⌊n

2

⌋

− 2
)(

n−
⌊n

2

⌋)

)E≤≤⌊n/2⌋−2(D)

= −2

⌊n/2⌋−3
∑

k=0

E≤≤k(D) +
(⌊n

2

⌋

− 1
)(

n− 1−
⌊n

2

⌋)

E≤≤⌊n/2⌋−1(D)

+ (−2
(⌊n

2

⌋

− 1
)(

n− 1−
⌊n

2

⌋)

+
(⌊n

2

⌋

− 2
)(

n−
⌊n

2

⌋)

)E≤≤⌊n/2⌋−2(D).
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Since E≤≤⌊n/2⌋−1(D) = E≤≤⌊n/2⌋−2(D) + E≤⌊n/2⌋−1(D) = E≤≤⌊n/2⌋−2(D) +
(

n
2

)

, it follows by
Theorem 2 that

cr (D) = 3

(

n

4

)

−

⌊n/2⌋−1
∑

k=0

k (n− 2− k)Ek (D) = 3

(

n

4

)

+ 2

⌊n/2⌋−3
∑

k=0

E≤≤k (D)

+
(

n+ 1− 2
⌊n

2

⌋)

E≤≤⌊n/2⌋−2(D)−
(⌊n

2

⌋

− 1
)(

n− 1−
⌊n

2

⌋)

(

n

2

)

= 2

⌊n/2⌋−3
∑

k=0

E≤≤k (D)−
1

2

(

n

2

)⌊

n− 2

2

⌋

+

{

E≤≤⌊n/2⌋−2(D) if n is even,

2E≤≤⌊n/2⌋−2(D) if n is odd,

which is equivalent to the claimed result.

3 The 2-page crossing number

We are concerned with 2-page book drawings of Kn. Obviously any line can be chosen
as the spine, and for the rest of the paper we will assume that the spine is the x-axis.
Moreover, using a suitable homeomorphism of the plane, we will assume that the vertices
are precisely the points with coordinates (1, 0), (2, 0), . . . , (n, 0). Furthermore, because each
edge is completely contained in a page (the upper or lower half plane), the crossings cannot
happen on the spine. This means that the local redrawing rules used to transform any
drawing of a graph into a good drawing without increasing the number of crossings preserve
the property of being a 2-page book drawing. Therefore, we only consider good 2-page book
drawings of Kn.

Consider a good 2-page book drawing D of Kn, and label the vertices 1, 2, . . . , n from left
to right. Because D is a good drawing, it is readily seen that none of the edges 12, 23, . . . , (n−
1)n, n1 is crossed. Thus we may choose to place each of these edges in either the upper closed
halfplane (page) or in the lower closed halfplane (page). Moreover, we may choose to place
each of the edges 12, 23, . . . , (n− 1)n completely on the spine, and this is the convention we
shall adopt for the rest of the paper. The edge n1 may be placed indistinctly in the upper
page or in the lower page, and for the rest of the paper we adopt the convention that it is
placed in the upper page. Furthermore, because we are only concerned with good drawings,
we assume without loss of generality that the rest of the edges are semicircles.

Color the edges above or on the spine blue and below the spine red, respectively. We
construct an upper triangular matrix which corresponds to the coloring of these edges, see
Figure 2. We call this the 2-page matrix of D and denote it by M (D). Label the columns
of the 2-page matrix with 2, . . . , n from left to right and the rows with 1, 2, . . . , n − 1 from
top to bottom. For i < j an entry (i, j) (row,column) in the 2-page matrix M(D) is a point
with the same color as the edge ij in the drawing D.
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Remark 4. It follows from the convention laid out above that for every 2-page book drawing
D, the entries (1, 2), (2, 3), . . . , (n− 1, n) and (1, n) in M(D) are all blue.

Figure 2: Two-colored diagram for a 2-page book drawing D of K8 and the corresponding
2-page matrix M(D). Solid dots and lines represent blue edges. Open dots and dashed lines
represent red edges. From our convention to place the edges 12, 23, . . . , (n−1)n on the spine
and the edge 1n in the upper page, it follows that all the entries in the main diagonal, as
well as the upper right corner entry, are blue.

We start by proving some basic properties of the 2-page matrix.

Lemma 5. Let D be a 2-page book drawing of Kn and 1 ≤ i < j ≤ n. Let k denote the
number of points in M(D) with the same color as entry (i, j) that are located above or to the
right of entry (i, j). Then the edge ij is a k-edge. (It is possible to have k > ⌊n/2⌋ − 1.)

Proof. Let 1 ≤ i < j ≤ n and assume that the edge ij is blue (red). We prove that the
number of points l in D to the left (right) of ij is exactly k. For l 6∈ {i, j} the triangle ijl
is oriented counter-clockwise (clockwise) if and only if either l < i and the edge lj is blue
(red), or l > j and the edge il is blue (red). In the first case these edges correspond to blue
(red) points above the entry (i, j), and in the second case to blue (red) points to the right
of the entry (i, j), respectively.

In view of Lemma 5 we say that the point in the entry (i, j) of the 2-page matrix of D
represents a k-edge if ij is a k-edge (or an (n− 2− k)-edge) in D.

Lemma 6. For k < n/2 − 1 and for 1 ≤ j ≤ k + 1, in the 2-page matrix of a drawing D
of Kn there are at least 2 (k + 2− j) points in row j representing ≤k-edges. Similarly, for
n− k ≤ j ≤ n there are at least 2 (k + 1− n + j) points in column j representing ≤k-edges.

Proof. For 1 ≤ j ≤ k + 1, in row j the rightmost k + 2 − j points of each color represent
≤k-edges as they have at most k + 1− j points of their color to the right and at most j − 1
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on top. So if each color appears at least k + 2 − j times in row j, we have guaranteed
2 (k + 2− j) ≤k-edges in row j. If one of the colors appears fewer than k + 2 − j times, so
that there are k + 2− j − e blue points in row j for some 1 ≤ e ≤ k + 2− j, then there are
n − j − (k + 2− j − e) = n − 2 − k + e red points in this row. In this case we claim that
also the leftmost e red points in this row represent ≤k-edges. In fact, for 1 ≤ i ≤ e, the
i-th red point (from the left) in row j, has exactly n− 2− k + e− i red points to the right
and perhaps more red points above. Since e ≥ i implies n− 2− k + e− i ≥ n− 2− k, this
i-th red point also represents a ≤k-edge. The equivalent result holds for the rightmost k+1
columns.

Lemma 7. For 0 ≤ j < n/2− 1, in the 2-page matrix of a drawing D of Kn there are two
points in column n which correspond to j-edges in D. For n even there exists one point in
column n corresponding to an (n/2− 1)-edge in D.

Proof. We follow the lines of the proof of Lemma 6. Consider the points in column n in order
from top to bottom. By Lemma 5 the i-th vertex of a color corresponds to an (i− 1)-edge.
Thus, if there are at least j+1 vertices for each color we are done. Otherwise assume without
loss of generality that there are j + 1 − e blue points in column n for some 1 ≤ e ≤ j + 1.
Then there are n−1−(j+1−e) = n−j+e−2 red points in this column. For 1 ≤ i ≤ ⌊n/2⌋
the i-th red point corresponds to an (i − 1)-edge, and for ⌊n/2⌋ + 1 ≤ i ≤ n − j + e − 2
the i-th red point corresponds to an (i− 1) = (n− i− 1)-edge. Thus we get two red points
corresponding to j-edges for i = j+1 and i = n−j−1. Finally, observe that these two points
are different for j < n/2− 1. For n even we get only one such point for j = n/2− 1.

The next theorem gives a lower bound on the number of ≤≤k-edges, which will play a
central role in deriving our main result. We need the following definitions. Let D be a good
drawing of Kn. Let l be a vertex of Kn, and let D′ be the (evidently, also good) drawing of
Kn−1 obtained by deleting from D the vertex l and its adjacent edges. Note that a k-edge ij
in D′ is a k-edge or a (k + 1)-edge in D. Indeed, if ij has exactly k points to its right in D′

(an equivalent argument holds if the k points are on its left), then there are k or k+1 points
to the right of ij in D depending on whether l is to the left or to the right, respectively, of
ij. We say that a k-edge in D is (D,D′)-invariant if it is also a k-edge in D′. Whenever
it is clear what D and D′ are, we simply say that an edge is invariant. A (D,D′)-invariant
≤ k-edge is a (D,D′)-invariant j-edge for some 0 ≤ j ≤ k ≤ n/2− 1. Denote by E≤k(D,D′)
the number of (D,D′)-invariant ≤ k-edges.

Theorem 8. Let n ≥ 3. For every 2-page book drawing D of Kn and 0 ≤ k < n/2 − 1, we
have

E≤≤k (D) ≥ 3
(

k+3
3

)

. (6)

Proof. We proceed by induction on n. The induction base n = 3 holds trivially. For n ≥ 4,
consider a 2-page book drawing D of Kn with horizontal spine and label the vertices from
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left to right with 1, 2, . . . , n. Remove the point n and all incident edges to obtain a 2-page
book drawing D′ of Kn−1. To bound E≤≤k (D), recall that

E≤≤k (D) =

k
∑

j=0

(k + 1− j)Ej (D) . (7)

All edges incident to n are in D but are not in D′. In fact, by Lemma 7, there are two
j-edges adjacent to the vertex n for each 0 ≤ j ≤ k ≤ ⌊n/2⌋ − 2. These edges contribute
with 2

∑k
j=0(k + 1− j) = 2

(

k+2
2

)

to Equation (7). We next compare Equation (7) to

E≤≤k−1 (D
′) =

k−1
∑

j=0

(k − j)Ej (D
′) . (8)

Any edge contributing to Equation (8) also contributes to Equation (7), but possibly with
a different value. As observed before, a j-edge in D′ is a j-edge or a (j + 1)-edge in D.
A j-edge in D′ contributes to Equation (8) with k − j. A j-edge and a (j + 1)-edge in D
contribute to Equation (7) with k + 1 − j and k − j, respectively. This is a gain of +1 or
0, respectively, towards E≤≤k(D) when compared to E≤≤k−1(D

′). Finally, a k-edge in both
D and D′ does not contribute to Equation (8) and contributes to Equation (7) with +1.
Therefore

E≤≤k(D) = E≤≤k−1(D
′) + 2

(

k + 2

2

)

+ E≤k(D,D′).

By induction hypothesis, E≤≤k−1(D
′) ≥ 3

(

k+2
3

)

and thus

E≤≤k(D) ≥ 3

(

k + 2

3

)

+ 2

(

k + 2

2

)

+ E≤k(D,D′) = 3

(

k + 3

3

)

−

(

k + 2

2

)

+ E≤k(D,D′).

We finally prove that

E≤k(D,D′) ≥

(

k + 2

2

)

. (9)

In fact, we prove that for each 1 ≤ j ≤ k + 1 there are at least k + 2 − j points in row j
of M(D) that represent (D,D′)-invariant ≤ k-edges. Suppose that the edge jn is blue (the
equivalent argument holds when jn is red). Then any red point in row j with i ≤ k red
points above or to its right inM(D) represents a (D,D′)-invariant i-edge; and any blue point
in row j with i ≥ n − 2 − k blue points above or to its right represents a (D,D′)-invariant
(n− 2 − i)-edge. Thus, the first k + 2− j red points from the right in row j (if they exist)
represent (D,D′)-invariant ≤ k-edges as they have at most k + 2 − j − 1 red points to the
right and at most j − 1 red points above in both M (D) and M (D′). If there are fewer
than k + 2 − j red points in row j of M(D), say k + 2 − j − e for some 1 ≤ e ≤ k + 2 − j,
then the first e blue points in row j of M(D) from the left represent ≤k-edges, because they
have at least n − j − e ≥ n − j − k − 2 + j = n − k − 2 blue points to their right. Hence
there are at least k + 2 − j − e red points and at least e blue points (for a total of at least
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k + 2 − j points) that represent (D,D′)-invariant ≤ k-edges in row j of M(D). Summing
over all 1 ≤ j ≤ k + 1, we get that

E≤k(D,D′) ≥

k+1
∑

j=1

(k + 2− j) =

(

k + 2

2

)

.

We now summarize the conditions that guarantee that equality is achieved in Theorem 8.
This remark is used in the next section to understand the structure of the crossing optimal
drawings.

Remark 9. Let D be a 2-page book drawing of Kn and 0 ≤ k < n/2 − 1. Moreover D′ is
defined as in the proof of Theorem 8. Then E≤≤k (D) = 3

(

k+3
3

)

if and only if

1. E≤≤k−1(D
′) = 3

(

k+2
3

)

and

2. E≤k(D,D′) =
(

k+2
2

)

, which is equivalent to simultaneously satisfying that

(a) For each 1 ≤ j ≤ k + 1 there are exactly k + 2− j entries in row j of M(D) that
represent (D,D′)-invariant ≤ k-edges and

(b) For each k + 2 ≤ j ≤ n− 1 there are no entries in row j of M(D) that represent
(D,D′)-invariant ≤ k-edges.

We are now ready to prove our main result, namely that the 2-page crossing number of
Kn is Z(n).

Theorem 10. For every positive integer n, ν2(Kn) = Z(n).

Proof. The cases n = 1 and n = 2 are trivial. Let n ≥ 3. As we mentioned above, 2-page
book drawings with Z (n) crossings were constructed by Blažek and Koman [8] (see also Guy
et al. [18], Damiani et al. [13], Harborth [20], and Shahrokhi et al. [23].) These drawings
show that ν2 (Kn) ≤ Z (n). For the lower bound, let D be a 2-page book drawing of Kn.
Using Proposition 3 and Theorem 8, we obtain

cr (D) ≥ 2

⌊n/2⌋−2
∑

k=0

3

(

k + 3

3

)

−
1

2

(

n

2

)⌊

n− 2

2

⌋

−
3

2
(1 + (−1)n)

(
⌊

n
2

⌋

+ 1

3

)

= 6

(
⌊

n
2

⌋

+ 2

4

)

−
1

2

(

n

2

)⌊

n− 2

2

⌋

−
3

2
(1 + (−1)n)

(
⌊

n
2

⌋

+ 1

3

)

=

{

1
64
(n− 1)2 (n− 3)2 if n is odd,

1
64
n (n− 2)2 (n− 4) if n is even,

= Z(n).
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4 Crossing optimal configurations

In all this section, D denotes a good 2-page book drawing of Kn (satisfying the conditions
laid out at the beginning of Section 3) andM(D) its 2-page matrix. We say thatD is crossing
optimal if ν2(D) = Z(n). Theorem 23 in Subsection 4.3 describes the general structure of
the crossing optimal 2-page book drawings of Kn. We use it to prove that, up to sphere
homeomorphism, there is a unique crossing optimal 2-page book drawing of Kn when n
is even and, in contrast, there exists an exponential number of non sphere-homeomorphic
crossing optimal 2-page book drawings of Kn when n is odd.

4.1 Equivalent drawings

Let D be a 2-page book drawing of Kn. Recall that we are assuming that the vertices of
D are the points {(i, 0) : 1 ≤ i ≤ n}. Consider the following transformation f that results
in the 2-page book drawing f(D) of Kn: move the vertex (1, 0) to the point (n, 0), and for
every 2 ≤ k ≤ n move the vertex (k, 0) to the vertex (k − 1, 0). That is, if an edge 1j was
drawn above (below) the spine in D, then the edge (j−1)n is drawn above (below) the spine
in f(D); for all other edges ij with 1 < i < j ≤ n, if ij was drawn above (below) the spine
in D, then the edge (i − 1)(j − 1) is drawn above (below) the spine in f(D). Note that D
and f(D) have the same number of crossings, and fn(D) = D. There are two other natural
crossing-preserving transformations of a drawing D: A vertical reflection g(D) about the line
with equation x = n/2 and a horizontal reflection h(D) about the spine (or x-axis). In g(D)
an edge ij is drawn above (below) the spine if the edge (n+1− j)(n+1− i) is drawn above
(below) the spine in D. In h(D) an edge ij is drawn above (below) the spine if the edge
ij is drawn below (above) the spine in D. Note that g2(D) = h2(D) = D. Given a 2-page
book drawing D, any drawing D′ obtained from D by compositions of these transformations
is said to be equivalent to D. Indistinctively, we say that the matrices M(D) and M(D′)
are equivalent. All drawings obtained this way are sphere-homeomorphic and thus they all
have the same number of crossings as D. The group spanned by these transformations is
isomorphic to the direct sum of the dihedral group D2n and the group with 2 elements Z2.
The set {f, g, h} is a set of generators such that g2 = h2 = fn = 1, g◦f = f−1◦g, h◦f = f ◦h,
and g◦h = h◦g. Thus the 4n transformations in the group can be parametrized by ha◦gb◦f i

with i ∈ {0, 1, . . . , n− 1} and a, b ∈ {0, 1}.

Now we describe these transformations in the 2-page matrix diagram of D: To obtain
M(f(D)) from M(D), we simply rotate 90 degrees clockwise the first row of M(D) and use
it as the nth column ofM(f(D)). The diagramM(g(D)) is obtained fromM(D) by reflecting
with respect to the diagonal {(i, n + 1 − i) : 1 ≤ i ≤ ⌊n/2⌋}. Finally, M(h(D)) is obtained
by switching the color of every point except those that join consecutive vertices on the spine
or the point (1, n). We can place M(D) and M(f(D)) together so that the part they have in
common overlaps. Doing this for M(fm(D)) for all integers m we obtain a periodic double
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Figure 3: A 2-page drawing of K8 and its strip diagram.

infinite strip with period n and with a horizontal section that is n − 1 units wide. We call
this the strip diagram of D, or of fm(D) for any integer m. (See Figure 3.) Any right
triangular region with the same dimensions as M(D) obtained from the strip diagram of D
by a horizontal and a vertical cut is the matrix diagram of a drawing equivalent to D and
thus it has the same number of crossings as D.

4.2 Properties of crossing optimal drawings

In contrast to the rectilinear case, the inequality E≤k(D) ≥ 3
(

k+2
2

)

does not hold in general
for topological drawings D of Kn, not even for general 2-page book drawings, as can be
seen in Figure 4. However, the inequality E≤k(D) ≥ 3

(

k+2
2

)

does hold for crossing optimal
drawings of Kn, where in fact the following stronger result is true.

Proposition 11. Let D be a 2-page book drawing of Kn and In = {k ∈ Z : 0 ≤ k ≤
⌊n/2⌋ − 2}. The following are equivalent: (i) cr(D) = Z(n), (ii) Ek(D) = 3(k + 1) for all
k ∈ In, (iii) E≤k(D) = 3

(

k+2
2

)

for all k ∈ In, and (iv) E≤≤k(D) = 3
(

k+3
3

)

for all k ∈ In.

Proof. Parts (i) and (iv) are equivalent as equality is achieved in Theorem 10 if and only if
equality is achieved in Theorem 8 for all k ∈ In. The implications (ii) ⇒ (iii) ⇒ (iv) follow
directly from the definitions of E≤k(D) and E≤≤k(D), using the identity

∑r
m=0

(

m
s

)

=
(

r+1
s+1

)

.
It remains to show that (iv) implies (ii), which we do by applying induction on k. For the
induction base note that E≤≤0(D) = E≤0(D) = E0(D) = 3. For 1 ≤ k ≤ ⌊n/2⌋ − 2, the
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identities Ej(D) = 3(j + 1) for all 0 ≤ j ≤ k − 1 and E≤≤k(D) = 3
(

k+3
3

)

imply that

3

(

k + 3

3

)

= E≤≤k(D) =
k

∑

j=0

(k + 1− j)Ej (D)

= Ek(D) + 3
k−1
∑

j=0

(k + 1− j)(j + 1),

and thus

Ek(D) = 3

(

k + 3

3

)

− 3
k−1
∑

j=0

(k + 1− j)(j + 1)

= 3

(

k + 3

3

)

−
1

2
k (k + 1) (k + 5) = 3 (k + 1) .

Figure 4: A 2-page book drawing ofK8 with four 0-edges (namely 17, 18, 27, and 28) and four
1-edges (namely 15 16, 38, and 48). This shows that the inequality E≤k(D) ≥ 3

(

k+2
2

)

, which
holds for every geometric drawing D of Kn, does not necessarily hold if D is a topological
drawing.

We now give a more detailed analysis on the crossing optimal 2-page book drawings of
Kn. We start with a couple of definitions. Consider the entry (i, j) of M(D). We order
the entries in row i to the left of (i, j) as follows: first all entries, from right to left, whose
color differs to that of (i, j), followed by all other entries (those with the same color as (i, j))
from left to right. This is called the order associated to (i, j). Observe that this is the order
in which the edges il (i < l < j) appear in the 2-page drawing, ordered bottom to top if
the edge ij is blue and top to bottom if the edge ij is red. Let c be an integer such that
0 ≤ c ≤ n − 1. Denote by Dc the subgraph of D obtained by deleting the c right-most
vertices of D, or equivalently, M(Dc) is obtained by deleting the last c columns of M(D).

Lemma 12. Suppose that l ≥ i+m+1 for some integers 1 ≤ i < l < j ≤ n and 1 ≤ m < j−i.
The entry (i, l) is one of the first m entries in the order associated to (i, j) if and only if
(i, l) and (i, j) have different colors.
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Proof. Note that if (i, l) and (i, j) have the same color, then all entries to the left of (i, l)
come before (i, l) in the order associated to (i, j).

Lemma 13. Let p be an integer such that 0 ≤ p ≤ ⌊n/2⌋ − 2. Suppose that E≤k(D,D1) =
(

k+2
2

)

for all 0 ≤ k ≤ p. Then M (D) satisfies that for 1 ≤ i ≤ p+1 in row i there is exactly
one (D,D1)-invariant k-edge for each i − 1 ≤ k ≤ p, and there are no (D,D1)-invariant
(≤ i− 2)-edges. In all other rows there are no (D,D1)-invariant ≤ p-edges.

Proof. In what follows all invariant edges are (D,D1)-invariant edges. We prove by induction
that for each 0 ≤ k ≤ p, row i ofM(D) contains exactly one invariant k-edge for 1 ≤ i ≤ k+1
and no invariant k-edge for k+2 ≤ i ≤ n−1. For k = 0 there is a unique invariant 0-edge and
it appears in row 1. This edge corresponds to the first entry in the order associated to (1, n)
in M(D). For k > 0, we use Remark 9, E≤k(D,D1) =

(

k+2
2

)

, and E≤k−1(D,D1) =
(

k+1
2

)

.
For k + 2 ≤ i ≤ n − 1, Remark 9.2b (for k) implies that there are no invariant k-edges in
row i. For 1 ≤ i ≤ k, Remark 9.2a (first for k and then for k − 1), implies that there is
exactly (k + 2− i)− (k + 1− i) = 1 invariant k-edge in row i (invariant ≤ k-edges that are
not (≤ k − 1)-edges). Finally, for i = k + 1 Remarks 9.2a and 9.2b (for k) imply that there
is exactly k + 2 − (k + 1) = 1 invariant ≤ k-edge and no invariant (≤ k − 1)-edge in row i.
Therefore, there is exactly one invariant k-edge in row k + 1.

Lemma 14. Let p be an integer such that 0 ≤ p ≤ ⌊n/2⌋ − 2.

i) Suppose that for some 1 ≤ i ≤ p+ 1 row i of M(D) has exactly one (D,D1)-invariant
k-edge for each i− 1 ≤ k ≤ p and no (D,D1)-invariant ≤ (i− 2)-edges. If the entry (i, n) in
M(D) is blue (red), then the mth entry in row i in the order associated to (i, n) has at least
min{p+ 2−m, i− 1} red (blue) entries above for every 1 ≤ m ≤ min{p+ 1, n− i− 1}.

ii) Suppose that for some i ≥ p + 2 row i of M(D) does not have (D,D1)-invariant
≤ p-edges. If the entry (i, n) in M(D) is blue (red), then the mth entry in row i in the
order associated to (i, n) has at least p + 2 −m red (blue) entries above for every 1 ≤ m ≤
min{p+ 1, n− i− 1}.

Proof. In what follows invariant edges refer to (D,D1)-invariant edges. Denote by (i, em) the
mth entry in the order associated to (i, n). Note that if (i, em) and (i, n) have opposite colors
and the number of points above plus the number of points to the right of (i, em) with the
same color as (i, em) is at most p, then (i, em) is an invariant ≤ p-edge. Similarly, if (i, em)
and (i, n) have the same color and the number of points above plus the number of points to
the right of (i, em) with the same color as (i, em) is more than n − 2 − p, then (i, em) is an
invariant ≤ p-edge.

Suppose that the entry (i, n) of M(D) is blue (red).

(i) If (i, e1) is red (blue), then it does not have red entries to its right and it has at most
i − 1 red (blue) entries above. Since i − 1 ≤ p, then (i, e1) is an invariant (≤ i − 1)-edge.
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Because there are no invariant (≤ i − 2)-edges in row i, it follows that (i, e1) is the unique
invariant (i− 1)-edge in row i and thus all i− 1 entries above it are red (blue). Similarly, if
the (i, e1) is blue (red), then all entries in row i are blue (red) and (i, e1) = (i, i+ 1). Hence
(i, e1) has n− i− 1 blue (red) entries to its right and perhaps some other blue (red) entries
above. Since n− i−1 ≥ n− (p+1)−1 ≥ n−2−p, then (i, e1) is an invariant (≤ i−1)-edge.
Because there are no invariant (≤ i − 2)-edges in row i, it follows that (i, e1) is the unique
invariant (i− 1)-edge in row i and thus all i− 1 entries above it are red (blue).

For 2 ≤ m ≤ p+ 2− i assume that the entry (i, em′) is an invariant (i− 2 +m′)-edge for
every 1 ≤ m′ ≤ m− 1. Note that i− 1 ≤ i− 2 +m′ ≤ p− 1.

If (i, em) is red (blue), then (i, em′) is red (blue) for every 1 ≤ m′ ≤ m− 1. So (i, em) has
exactly m− 1 red (blue) entries to its right and at most i− 1 red (blue) entries above, that
is, (i, em) is an invariant ≤ (i−2+m)-edge. By hypothesis there is a unique invariant k-edge
for every i − 1 ≤ k ≤ p and among the first m − 1 entries there is exactly one invariant
k-edge for each i − 1 ≤ k ≤ i− 2 + (m− 1) = i − 3 +m. So (i, em) is the unique invariant
(i − 2 + m)-edge (note that 1 ≤ i − 2 + m ≤ p) and thus all the entries above it are red
(blue).

If (i, em) is blue (red), then there are exactly n− i+m blue (red) entries to its right and
perhaps some others above it. Since n− i+m ≥ n− i− (p+2− i) = n− p+2, then (i, em)
is an invariant ≤ (i− 2 +m)-edge. As before (i, em) must be an invariant (i− 2 +m)-edge
and thus it must have only red (blue) entries above.

We have already determined the unique invariant k-edge for each 1 ≤ k ≤ p. So there are
no more invariant ≤ p-edges in row i. For p+ 3− i ≤ m ≤ min{p+ 1, n− i− 1}, we prove
that the entry (i, em) has at least p+2−m = min{p+2−m, i−1} red (blue) entries above.

If (i, em) is red (blue), then it has m− 1 red (blue) entries to its right. If (i, em) had less
than p+ 2−m (note that p+ 2−m ≤ i− 1) red (blue) entries above, then it would be an
invariant ≤ p-edge (because (m− 1) + (p+ 1−m) = p) getting a contradiction.

If (i, em) is blue (red), then it has n − i − m blue (red) entries to its right. If (i, em)
had less than p + 2 − m red (blue) entries above, then it would have a total of at least
n − i −m + (i − 1)− (p + 1 −m) = n − 2 − p blue (red) entries above or to its right, and
thus it would be an invariant ≤ p-edge getting a contradiction.

(ii) The proof is the same as for the case p+ 3− i ≤ m ≤ min{p+ 1, n− i− 1} in (i) as
we only used that the mth entry in that range was not an invariant ≤ p-edge.

Lemma 15. If D is crossing optimal, then for 0 ≤ j ≤ ⌊n/2⌋ − 2 we have

E≤≤k(Dj) = 3
(

k+3
3

)

for all 0 ≤ k ≤ ⌊n/2⌋ − 2− j.

Proof. Since D is crossing optimal, equality must be achieved in the proof of Theorem 10,
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that is, E≤≤k(D) = 3
(

k+3
3

)

for all 0 ≤ k ≤ ⌊n/2⌋ − 2. By Remark 9.1 we have that

E≤≤k−1(D1) = 3
(

k+2
3

)

for all 0 ≤ k ≤ ⌊n/2⌋ − 2. In other words, E≤≤k(D1) = 3
(

k+3
3

)

for all
0 ≤ k ≤ ⌊n/2⌋ − 3.

In general, for 0 ≤ j ≤ ⌊n/2⌋ − 2, E≤≤k(Dj) = 3
(

k+3
3

)

for all 1 ≤ k ≤ ⌊n/2⌋ − 2 − j

implies that E≤≤k−1(Dj+1) = 3
(

k+2
3

)

for all 1 ≤ k ≤ ⌊n/2⌋ − 2− j by Remark 9.1. In other

words, E≤≤k(Dj+1) = 3
(

k+3
3

)

for 1 ≤ k ≤ ⌊n/2⌋ − 3− j.

Lemma 16. If D is crossing optimal, then in M(D) the mth entry in the order associated
to (i, j) has at least min{j − ⌈n/2⌉ −m, i− 1} entries above with different color than (i, j)
for all 1 ≤ m ≤ min{j − ⌊n/2⌋ − 1, j − i− 1}.

Proof. Consider the entry (i, j) of M(D). Because D is crossing optimal, it follows from
Lemma 15 that

E≤≤k(Dn−j) = 3
(

k+3
3

)

for all 0 ≤ k ≤ ⌊n/2⌋ − 2− (n− j) = j − 2− ⌈n/2⌉.

Consider row i of Dn−j. (Note that Dn−j has j − 1 rows.) If 1 ≤ i ≤ j − 1− ⌈n/2⌉, then
by Lemma 13 for p = j− 2−⌈n/2⌉, the 2-page matrix M(Dn−j) satisfies that in row i there
is exactly one (Dn−j, Dn−j+1)-invariant k-edge for each i− 1 ≤ k ≤ j − 2− ⌈n/2⌉ and there
are no (Dn−j, Dn−j+1)-invariant (≤ j − 2− ⌈n/2⌉)-edges. Then by Lemma 14(i) if the entry
(i, j) in M(D) (actually in M(Dn−j) but we look at it as a submatrix of M(D)) is blue (red),
then the mth entry in the order associated to (i, j) has at least min{j − ⌈n/2⌉ −m, i − 1}
red (blue) entries above.

If j − ⌈n/2⌉ ≤ i ≤ j − 1, then by Lemma 13 for p = j − 2 − ⌈n/2⌉, the 2-page matrix
M(Dn−j) satisfies that in row i there are no (Dn−j, Dn−j+1)-invariant (≤ j−2−⌈n/2⌉)-edges.
Then by Lemma 14(ii) if the entry (i, j) in M(D) is blue (red), then the mth entry in the
order associated to (i, j) has at least j − ⌈n/2⌉ −m = min{j − ⌈n/2⌉ −m, i− 1} red (blue)
entries above.

Corollary 17. If D is crossing optimal, then for 2 ≤ i ≤ ⌈n/2⌉ and ⌈n/2⌉ + 2 ≤ j ≤ n,
each of the first j − ⌈n/2⌉ − 1 entries in the order associated to (i, j) has at least one entry
above with different color than (i, j).

Proof. Let 1 ≤ m ≤ j −⌈n/2⌉− 1. Since ⌊n/2⌋ and i are at most ⌈n/2⌉, then m ≤ min{j −
⌊n/2⌋−1, j−i−1}. Alsom ≤ j−⌈n/2⌉−1 and i ≥ 2 imply that max{j−⌈n/2⌉−m, i−1} ≥ 1.
Thus by Lemma 16, the mth entry in row i in the order associated to (i, j) has at least one
entry above with different color than (i, j).

Corollary 18. If D is crossing optimal, then for n ≥ 3, 2 ≤ i ≤ ⌊n/2⌋− 1, and ⌈n/2⌉+ i ≤
j ≤ n, all entries above the first j − i + 1 − ⌈n/2⌉ entries in the order associated to (i, j)
have different color than (i, j).
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Proof. Let 1 ≤ m ≤ j − i + 1 − ⌈n/2⌉. Since i ≥ 2 and n ≥ 3, then m ≤ min{j − ⌊n/2⌋ −
1, j − i − 1}. Also m ≤ j − i + 1 − ⌈n/2⌉ implies that max{j − ⌈n/2⌉ −m, i − 1} ≥ i − 1.
Thus by Lemma 16, the mth entry in row i in the order associated to (i, j) has at least i− 1
entries above, (i.e., all entries above it) with different color than (i, j) in M(D).

Lemma 19. Suppose that D is crossing optimal and 0 ≤ k ≤ ⌊n/2⌋−2. Then all ≤ k-edges
of D belong to the union of the first k + 1 rows and the last k + 1 columns of M(D).

Proof. Suppose by contradiction that the entry (i, j) of M(D) represents a k-edge and is
not in the first k + 1 rows (i ≥ k + 2) or in the last k + 1 columns (j ≤ n − k − 1). Since
D is crossing optimal, by Remark 9.1 the entry (i, j) is not (D,D1)-invariant, that is, ij is
a (k − 1)-edge in D1. Also, E≤≤k−1(D1) = 3

(

k+2
2

)

by Remark 9.1. In general, assume that
(i, j) represents a (k − l)-edge in Dl, not in the first k − l + 1 rows of M(Dl), and that
E≤≤k−l(Dl) = 3

(

k−l+3
2

)

. Then, by Remark 9.2b, we have that ij is a (k− l− 1)-edge in Dl+1

and, by Remark 9.1, E≤≤k−l−1(Dl+1) = 3
(

k−l+2
2

)

. In particular, (i, j) is a 0-edge in M(Dk)
that is not in the last column ofM(Dk) (column n−k ofM(D)). Since by Lemma 6 there are
at least three 0-edges in the first column and row of M(Dk) and i ≥ 2, then E≤≤0(Dk) ≥ 4.
But E≤≤0(Dk) must be 3, by Lemma 15, getting a contradiction.

We extend the standard terminology from the geometrical setting, and call a (⌊n/2⌋−1)-
edge a halving edge.

Lemma 20. If D is crossing optimal, then the entries (⌊n/2⌋, ⌈n/2⌉+1), (⌊n/2⌋, ⌊n/2⌋+1),
and (⌈n/2⌉, ⌈n/2⌉ + 1) of M(D) are halving edges.

Proof. This follows from Lemma 19 as all ≤ (⌊n/2⌋ − 2)-edges of D belong to the union of
the first ⌊n/2⌋ − 1 rows (top to bottom) and the last ⌊n/2⌋ − 1 columns (left to right) of D.
The entries (⌊n/2⌋, ⌈n/2⌉+1), (⌊n/2⌋, ⌊n/2⌋+1), and (⌈n/2⌉, ⌈n/2⌉+1) are not in the first
⌊n/2⌋ − 1 rows or in the last ⌊n/2⌋ − 1 columns.

Lemma 20 guarantees that the entry (i, i+ 1) in general, and the entry (i, i+ 2) when n
is odd, are halving lines in some drawing equivalent to D. The next result states what this
means in D. We state it only for 1 ≤ i ≤ ⌊n/2⌋ (but it can be stated for ⌈n/2⌉ ≤ i ≤ n as
well) as it is the only case we explicitly use later in the paper.

Lemma 21. Let 1 ≤ i ≤ ⌊n/2⌋. If D is crossing optimal, then M(D) satisfies that the
number of blue entries in

{(r, i+ 1) : 1 ≤ r ≤ i− 1} ∪ {(i, c) : i+ 2 ≤ c ≤ i+ ⌈n/2⌉} (10)

∪{(i+ 1, c) : i+ ⌈n/2⌉+ 1 ≤ c ≤ n}

is either ⌊n/2⌋ − 1 or ⌈n/2⌉ − 1. If n is odd, then the number of entries in

{(r, i+ 2) : 1 ≤ r ≤ i− 1} ∪ {(i, c) : i+ 3 ≤ c ≤ i+ ⌈n/2⌉} (11)

∪{(i+ 2, c) : i+ ⌈n/2⌉+ 1 ≤ c ≤ n}
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with the same color as the entry (i, i+ 2) is either ⌊n/2⌋ − 1 or ⌊n/2⌋.

Proof. In the strip diagram of D, the entry (i, i + 1) of M(D) corresponds to the en-
try (⌊n/2⌋, ⌊n/2⌋ + 1) of M(f i−⌊n/2⌋(D)), see Figure 5 (left). Applying Lemma 20 to
M(f i−⌊n/2⌋(D)) and noticing that the entries of M(D) in (10) correspond to the entries
above plus the entries below the entry (⌊n/2⌋, ⌊n/2⌋+1) of M(f i−⌊n/2⌋(D)) gives the result.
The proof of the second part is similar, see Figure 5 (right).

Figure 5: A halving line in a drawing equivalent to D seen in the matrix M(D).

Lemma 22. If D is crossing optimal, then there exists a drawing D′ equivalent to D such
that in M(D′) the ⌈n/2⌉ entries (1, n), (2, n), . . . , and (⌈n/2⌉, n) are blue and the ⌊n/2⌋ − 1
entries (1, ⌈n/2⌉+ 1), (1, ⌈n/2⌉+ 2), . . ., (1, n− 1) are red.

Proof. For each integer m, let em be the largest integer such that the last em entries in
row ⌊n/2⌋ of M(fm(D)) have the same color. (These entries are (⌊n/2⌋, n − em + 1), . . .,
(⌊n/2⌋, n).) Similarly, let e′m be the largest integer such that the first e′m entries in column
⌈n/2⌉+1 ofM(fm(D)) have the same color. (These entries are (1, ⌈n/2⌉+1), . . ., (e′m, ⌈n/2⌉+
1).) Let E = max{em, e

′
m : m ∈ Z}. We claim that E = ⌈n/2⌉. Indeed, suppose that

E ≤ ⌈n/2⌉ − 1 and without loss of generality assume that E = em0
for some integer m0. (If

E = e′m0
, start with g(D) instead of D.) Then entry (⌊n/2⌋, n − em0

) has a different color
than the entries to its right, namely, (⌊n/2⌋, n− em0

+1), . . . , (⌊n/2⌋, n). By Lemma 16 (for
i = ⌊n/2⌋ and j = n) the entry (⌊n/2⌋, n−em0

) has at least min{n−⌈n/2⌉−1, ⌊n/2⌋−1} =
⌊n/2⌋ − 1 entries above with the same color as (⌊n/2⌋, n − em0

). But this means that
e′m0−1+⌊n/2⌋−em0

≥ em0
+ 1 = E + 1, a contradiction.

Because E = em0
= ⌈n/2⌉, all entries in row ⌊n/2⌋ of M(fm0(D)) are blue. By Lemma

20 all entries in column ⌊n/2⌋+1 of M(fm0(D)) above the entry (⌊n/2⌋, ⌊n/2⌋+1) are red.
This implies that D′ = fm0+⌊n/2⌋(D) satisfies the statement.
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4.3 The structure of crossing optimal drawings

We are finally ready to investigate the structure of crossing optimal drawings. The next
result is the workhorse behind Theorems 24 and 27, the main results in this section. To
help comprehension, we refer the reader to Figure 6.

Theorem 23. Let n ≥ 6, e = 0 for n even and e = 1 for n odd, and let D be a crossing
optimal 2-page book drawing of Kn. Then there exists a drawing D′ equivalent to D such
that M(D′) satisfies:

1. for 4+ e ≤ s ≤ ⌊n/2⌋+1 and n+2+ e ≤ s ≤ n+ ⌊n/2⌋+1 the entry (r, s− r) is blue
for all max{1, s− n} ≤ r ≤ (s− 5)/2;

2. for ⌈n/2⌉+ 2 + e ≤ s ≤ n and n+ ⌈n/2⌉+ 2 + e ≤ s ≤ 2n− 2− e the entry (r, s− r)
is red for all max{1, s− n} ≤ r ≤ (s− 5)/2 (except for (1, n), which by convention is
blue);

3. for n odd, the entries (1, ⌈n/2⌉ + 1) and (⌊n/2⌋, ⌈n/2⌉ + 1) are red, and the entries
(2, n) and (⌈n/2⌉, ⌈n/2⌉+ 2) are blue.

Figure 6: The even and odd cases in Theorem 23. The crosses in the odd case represent
points whose color is not fixed.

Proof. Let

TU(D) = {(r, c) ∈ M(D) : 2 ≤ c ≤ ⌈n/2⌉ , 1 ≤ r ≤ c− 1},

R(D) = {(r, c) ∈ M(D) : ⌈n/2⌉ + 1 ≤ c ≤ n, 1 ≤ r ≤ ⌈n/2⌉}, and

TL(D) = {(r, c) ∈ M(D) : ⌈n/2⌉ + 1 ≤ c ≤ n, ⌈n/2⌉+ 1 ≤ r ≤ c− 1}.
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Figure 7: The regions TU(D), R(D), and TL(D).

We shall prove the theorem first for those entries that lie on R(D), then for those that lie
on TU (D), and finally for those that lie on TL(D).

The entries in R(D)

We refer the reader to Figure 7. By Lemma 22, we can assume that in M(D)

the entries (1, n), (2, n), . . . , (⌊n/2⌋, n) are blue (12)

(in fact (⌈n/2⌉, n) can also be assumed to be blue but we do not use this fact) and

the entries (1, ⌈n/2⌉ + 1), . . . , (1, n− 1) are red. (13)

Moreover, we can assume that

the entry (2, n− 1) is red. (14)

(If it is blue, then M(h ◦ g(D)) satisfies (12), (13), and (14)).

We now prove that for each r such that 2 ≤ r ≤ ⌊n/2⌋,

the entries (r, ⌈n/2⌉+ 1), (r, ⌈n/2⌉+ 2), . . . , (r, 2⌊n/2⌋ − r + 1) are red (15)

and
the entries (r, 2 ⌈n/2⌉ − r + 2) , (r, 2 ⌈n/2⌉ − r + 3) , . . . , (r, n) are blue. (16)

Observe that if r = 2 and n is even, then (16) only concerns the entry (2, n), which
is blue by (12). (For r = 2 and n odd, (16) is an empty claim.) Thus we only need
to take care of the base case r = 2 for (15). Since (by (14)) the entry (2, n − 1) is red,

22



by Corollary 17 the first ⌊n/2⌋ − 2 entries in the order associated to (2, n − 1) have a
blue point above. By (13) the only candidates to have blue points above them are the
⌈n/2⌉ − 2 entries (2, 3), (2, 4), . . . , (2, ⌈n/2⌉). (Note that the order associated to the entry
(i, j) only applies to entries in row j to the left of entry (i, j).) Thus the ⌈n/2⌉ − 2 entries
(1, 3), (1, 4), . . . , (1, ⌈n/2⌉) are blue if n is even, and at most one of them, say (1, c1), is red
if n is odd. Moreover, by Lemma 12 the entries (2, ⌈n/2⌉+ 1), (2, ⌈n/2⌉+ 2), . . . , (2, n− 2)
are red.

For the inductive step, suppose that for some 3 ≤ t ≤ ⌊n/2⌋, each row r with 2 ≤ r ≤
t − 1 satisfies the result. We now prove (15) and (16) for r = t. Suppose that the entry
(t, 2⌈n/2⌉ − t+ 2) is red. Then by Corollary 17 each of the first ⌈n/2⌉ − t+ 1 entries in the
order associated to (t, 2⌈n/2⌉ − t + 2) has at least one blue entry above. Since the entries
(t, ⌈n/2⌉+1), . . . , (t, 2⌊n/2⌋− t+2) have all red above, the only candidates are the ⌈n/2⌉− t
entries (t, t+1), (t, t+2), . . . , (t, ⌈n/2⌉) and the entry 2⌊n/2⌋− t+3 = 2⌈n/2⌉− t+1 for odd
n. But, by Lemma 12, to be a candidate this last entry should be blue, which is impossible
because it would be the first entry in the order associated to (t, 2⌈n/2⌉− t+2) with at most
one blue entry above, contradicting Lemma 16. Since there are not enough candidates, then
the entry (t, 2⌈n/2⌉ − t + 2) is blue.

Now consider the blue entry (t, n). By Corollary 18 the first ⌊n/2⌋ − t + 1 entries in the
order associated to (t, n) have all entries above them red. The only candidates are (t, c1) if it
exists, (t, ⌈n/2⌉+1), . . . , (t, 2⌈n/2⌉−t+1). For n even, there are ⌈n/2⌉−t+1 = ⌊n/2⌋−t+1
candidates because (t, c1) does not exists, and thus all of them are red by Lemma 12. For n
odd, there are at most 2 more candidates than we need. By Lemma 12 any blue entry (t, c)
with c ≥ ⌊n/2⌋+2 is not a candidate. Thus at most two of the last ⌈n/2⌉− t+1 candidates
are blue. Suppose that one of the entries (t, ⌈n/2⌉+1), (t, ⌈n/2⌉+2), . . . , (t, 2⌊n/2⌋− t+1)
is blue. Then there exists ⌈n/2⌉ + 1 ≤ c ≤ 2⌈n/2⌉ − t such that (t, c) is blue and (t, c + 1)
is red. Then (t, c) is the first entry in the order associated to (t, c+ 1) and all entries above
it are red, contradicting Corollary 17. Thus (15) holds and, by Lemma 12 for (i, j) = (t, n),
the rest of (16) holds too.

Note that (15) is vacuous if r = ⌊n/2⌋ and n is odd. On the other hand, we argue that it
is possible to assume that

for odd n, the entry (⌊n/2⌋, ⌈n/2⌉+ 1) is red. (17)

Indeed, suppose that it is blue. Then, by Lemma 20, (⌊n/2⌋, ⌈n/2⌉+ 1) is a blue halving
entry with ⌊n/2⌋ − 1 red entries above and thus all ⌊n/2⌋ − 1 entries to its right are blue.
Hence, by Lemma 20, (⌊n/2⌋, ⌈n/2⌉) is halving with ⌊n/2⌋ blue entries to its right and thus
all ⌊n/2⌋−1 entries above are red. Note that M(f ⌊n/2⌋(D)) satisfies (12), (13), and (14) and
its entry (⌊n/2⌋, ⌈n/2⌉+ 1) is red. Then we start with f ⌊n/2⌋(D) instead of D.

We now prove that the version of (16) for r = ⌈n/2⌉ also holds:

the entries (⌈n/2⌉, ⌈n/2⌉+ 2) , (⌈n/2⌉, ⌈n/2⌉+ 3) , . . . , (⌈n/2⌉, n) are blue. (18)
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Figure 8: The upper triangle TU(D) for even and odd n in the proof of Theorem 23.

Note that (18) only needs to be proved for odd n, since for even n this is the case r = ⌊n/2⌋
in (16). Using (12) and (15) it follows that all the entries above (⌈n/2⌉, ⌈n/2⌉+ 1) are red.
By Lemma 20 (⌈n/2⌉, ⌈n/2⌉ + 1) is a halving entry, and so it follows that all the entries to
its right are blue. This proves (18).

We now prove that for 2 ≤ r ≤ ⌊n/2⌋ − 1

for odd n, the entry (r, n− r + 1) is red. (19)

Note that (17) is a version of (19) for r = ⌊n/2⌋. Observe that M(f ⌈n/2⌉(D)) satisfies (12)
and (13). If (2, n − 1) is red in M(f ⌈n/2⌉(D)), then the diagonal (r, n − r) with 1 ≤ r ≤
⌊n/2⌋−1 in M(f ⌈n/2⌉(D)) is red by (15). This corresponds to the diagonal (r, n−r+1) with
2 ≤ r ≤ ⌊n/2⌋ in M(D). So now assume that the entry (2, n− 1) is blue in M(f ⌈n/2⌉(D)),
which corresponds to (⌊n/2⌋, ⌈n/2⌉ + 2) being blue in M(D). In this case, we can assume
that (1, ⌈n/2⌉) is blue. (Otherwise start with M(h ◦ g ◦ f ⌈n/2⌉(D)) instead of D, which
satisfies (12), (13), (14), (⌊n/2⌋, ⌈n/2⌉ + 1) is red, and (1, ⌈n/2⌉) is blue.) Now, by Lemma
20, (⌊n/2⌋, ⌊n/2⌋ + 1) is a halving entry with ⌊n/2⌋ of the entries in (10) blue, then all
others must be red, i.e., (2, ⌈n/2⌉), (3, ⌈n/2⌉), . . . , (⌊n/2⌋ − 1, ⌈n/2⌉) are red. Assume by
contradiction that (r, n− r + 1) is blue for some 2 ≤ r ≤ ⌊n/2⌋ − 1. Then (r, n− r + 2) is
blue, otherwise (r, n− r+1) would be the first entry in the order associated to (r, n− r+2)
with no blue entry above, contradicting Corollary 17. But now the red entry (r, ⌈n/2⌉) is the
(⌈n/2⌉ − r)th entry in the order associated to the blue entry (r, n) with a blue entry above,
contradicting Corollary 18 and proving (19).

We finally observe that (12), (13), (14), (15), (16), (17), (18), and (19) prove Theorem 23
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for the entries in R(D).

The entries in TU(D)

We refer the reader to Figure 8. We prove by induction on c that for 1 ≤ c ≤ ⌊1
2
⌈n/2⌉⌋,

the entries (c+ e, ⌈n/2⌉+ 2− c), . . . , (⌊n/2⌋ − c, ⌈n/2⌉+ 2− c) are red, (20)

and
the entries (1, ⌈n/2⌉+ 2− c), . . . , (c− 1− e, ⌈n/2⌉+ 2− c) are blue. (21)

We have proved it for c = 1. Suppose that the result holds for all 1 ≤ c ≤ d − 1 and we
now prove it for c = d. By Lemma 21 for i = ⌈n/2⌉+1− d, and since by (16) the ⌊n/2⌋ − d
entries {(i, b) | 2⌈n/2⌉ − i+ 2 ≤ b ≤ i+ ⌈n/2⌉} ∪ {(i+ 1, b) | i+ ⌈n/2⌉+ 1 ≤ b ≤ n} in (10)
are blue, then (i, i+ 1) has at most d − 1 + e blue entries above. Suppose by contradiction
that (r, i+ 1) is blue for some d+ e ≤ r ≤ ⌊n/2⌋ − d. Then (r, i+ 1) is the first entry in the
order associated to (r, n− r + 1) and has at most ⌈n/2⌉ − 1 − (⌊n/2⌋ − d)− 1 = d − 2 + e
blue entries above. By Lemma 16, (r, i + 1) has at least min{⌊n/2⌋ − r, r − 1} blue entries
above and thus min{⌊n/2⌋ − r, r− 1} ≤ d− 2 + e. But r− 1 > d− 2 + e because r ≥ d+ e,
and ⌊n/2⌋ − r ≥ d > d− 2 + e because r ≤ ⌊n/2⌋ − d. Thus (20) holds for c = d.

Look at (i, i+1) again. The ⌊n/2⌋−1−3e entries {(r, i+1) | d+e ≤ r ≤ i−1−e}∪{(i, b) |
i+2+e ≤ b ≤ n−i+1} in (10) are red and thus, by Lemma 21, at most other 4e entries are red.
For n even, 4e = 0 and thus (21) holds. For n odd, suppose by contradiction that (d−e, i+1)
has a red entry above. We prove that in this case the entries (d− e, i+ 1), (d− e+ 1, i+ 1),
and (i− 1, i + 1) are red. Since (d − e, n + 1 − d + e) is red, then by Corollary 18 the first
⌊n/2⌋ + 2 − 2d + 2e entries in the order associated to (d − e, n + 1 − d + e) have only blue
entries above. If (d− e, i+ 1) were blue, then it would be one of the first two entries in the
order associated to (d− e, n+1− d+ e) with at least one red point above. This means that
1 ≥ ⌊n/2⌋+2−2d+2e contradicting that d ≤ ⌊1

2
⌈n/2⌉⌋. Thus (d−e, i+1) is red. Similarly,

(d − e + 1, i + 1) cannot be blue as it would be the first entry in the order associated to
(d − e + 1, n − d + e), which by Lemma 16 should have at most one red entry above, but
(d− e+ 1, i+ 1) has now at least 2 red entries above. Now (i− 1, i+1) is the first entry for
(i − 1, n + 2 − i) and, by (20), it has at least ⌈n/2⌉ + 1 − 2d + e red entries above, i.e., at
most d− 2− e blue entries above. But by Lemma 16, the first entry in the order associated
to the red entry (i − 1, n + 2 − i) has at least min{d − 1, i − 2} blue entries above. Thus
min{d−1, i−2} ≤ d−2−e, but d−1 > d−2−e and i−2 > d−2−e because d ≤ ⌊1

2
⌈n/2⌉⌋,

getting a contradiction. Hence (i−1, i+1) is red. By Lemma 21 at most ⌊n/2⌋ of the entries
in (11) are red, yet we already have ⌈n/2⌉ red entries (namely, at least the ⌈n/2⌉+1−2d+e
above (i− 1, i+1) mentioned before and the 2d− 2 entries {(i− 1, b) | i+2 ≤ b ≤ n− i+2}
to its right), getting a contradiction. Thus (21) holds for c = d.

Now we prove that for 2 ≤ c ≤ ⌈1
2
⌈n/2⌉⌉ + 1,

the entries (1, c), (2, c), . . . , (c− 2− e, c) are blue. (22)
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Figure 9: The lower triangle TL(D) versus the upper triangle TU(f
⌈n/2⌉(D)) for even and

odd n in the proof of Theorem 23.

Since (c − 1, c) is one of the ⌊n/2⌋ + 5 − 2c entries in the order associated to the red entry
(c − 1, n + 2 − c) (we have shown that the ⌊n/2⌋ − 1 − e entries immediately to the left of
(n+ 2− c) are red), then (c− 1, c) has at most one red entry above by Lemma 16. Suppose
by contradiction that (r, c) is red for some 1 ≤ r ≤ c− 2 − e. Then (r + 1, c) is blue. Since
(r+1, n− r) is red, then by Corollary 18 the first ⌊n/2⌋− 2r entries in the order associated
to (r + 1, n − r) have only blue entries above. But (r + 1, c) is one of the first ⌊n/2⌋ − 2r
entries and has the red entry (r, c) above, getting a contradiction.

We finally note that (20), (21), and (22) prove Theorem 23 for the entries in TU(D).

The entries in TL(D)

We refer the reader to Figure 9. Consider f ⌈n/2⌉(D). When n is even, see Figure 9 (left),
R(D) and R(f ⌈n/2⌉(D)) are identical and thus our previous arguments show that TU(D)
and TU(f

⌈n/2⌉(D)) = TL(D) are identical too, concluding the proof in this case. When n is
odd, see Figure 9 (right), R(D) and R(f ⌈n/2⌉(D)) are slightly different: for 2 ≤ r ≤ ⌊n/2⌋
the diagonal entries (r, n + 1 − r) are red in R(D) and unfixed in R(f ⌈n/2⌉(D)), and for
3 ≤ r ≤ ⌊n/2⌋ the diagonal entries (r, n+2−r) are unfixed in R(D) and blue in R(f ⌈n/2⌉(D)).
Also the last row of R(D) is blue and the last row of R(f ⌈n/2⌉(D)) is unfixed. However, the
last column of TU(f

⌈n/2⌉(D)) is red and this is what allows us to mimic the arguments used
for (20), (21), and (22) to show that TL(D), which corresponds to TU (f

⌈n/2⌉(D)) minus its
last column, satisfies the statement. More precisely, it can be proved by induction on c that
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for 1 ≤ c ≤ ⌊1
2
⌈n/2⌉⌋, in M(f ⌈n/2⌉(D))

the entries (c + 1, ⌈n/2⌉+ 1− c), . . . , (⌊n/2⌋ − c− 1, ⌈n/2⌉+ 1− c) are red (23)

and
the entries (1, ⌈n/2⌉+ 1− c), . . . , (c− 2, ⌈n/2⌉+ 1− c) are blue. (24)

We omit the proofs of (23) and (24), as they very closely resemble the proofs of (20) and
(21).

Similarly, it can be proved by induction that for 2 ≤ c ≤ ⌈1
2
⌈n/2⌉⌉, in M(f ⌈n/2⌉(D))

the entries (1, c), (2, c), . . . , (c− 3, c) are blue. (25)

The proof of (25) is also omitted, as it very closely resembles the proof of (22).

We finally note that (23), (24), and (25) prove Theorem 23 for the entries in TU(L).

4.4 The number of crossing optimal drawings

Theorem 23 completely determines M(D′) when n is even, which means that in this case
there is essentially only one crossing optimal drawing.

Theorem 24. For n even, up to sphere-homeomorphism, there is a unique crossing optimal
2-page book drawing of Kn.

Proof. The result is easily seen to hold for n = 2 and n = 4. For n ≥ 6 Theorem 23
completely determines M(D′). Note that this matrix corresponds to the drawings by Blažek
and Koman [8].

In contrast to the even case, for n odd there is an exponential number of non sphere-
homeomorphic crossing optimal 2-page book drawings of Kn. For any odd integer n ≥ 5,
we construct 2(n−5)/2 non-equivalent crossing optimal drawings of Kn. In fact, these 2(n−5)/2

drawings are pairwise non homeomorphic. To prove this, we need the next two results.

Theorem 25. For every n ≥ 13 odd, every crossing optimal 2-page book drawing of Kn has
exactly one Hamiltonian cycle of non-crossed edges, namely the one obtained from the edges
on the spine and the 1n edge.

Proof. Assume n ≥ 13 is odd. To show that 123 . . . n is the only non-crossed Hamiltonian
cycle, we show that all other edges are crossed at least once. Assume that D has the form
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described in Theorem 23. Let (r, c) be an entry of M(D) that does not represent an edge
on the spine or the 1n edge. Let

(r, c)+ =

{

(r + 1, c+ 1) if c < n, or
(1, r + 1), if c = n,

and (r, c)− =

{

(r − 1, c− 1) if r > 1, or
(c− 1, n), if r = 1.

Note that the edges corresponding to (r, c)+ and (r, c)− cross the edge rc if they have the
same color as (r, c).

First assume that 3 ≤ c − r ≤ n − 3. Suppose that (r, c) is a blue entry specified by
Theorem 23. If 5 ≤ r + c ≤ ⌊n/2⌋ − 1 or if n + 3 ≤ r + c ≤ n + ⌊n/2⌋ − 1, then note that
the entry (r, c)+ is also blue according to Theorem 23, and thus the edges corresponding to
(r, c) and (r, c)+ cross each other.

Because n ≥ 13, if ⌊n/2⌋ ≤ r+ c ≤ ⌊n/2⌋+ 1 or n+ ⌊n/2⌋ ≤ r+ c ≤ n+ ⌊n/2⌋+1, then
5 ≤ ⌊n/2⌋− 2 ≤ r+ c− 2 ≤ ⌊n/2⌋+1 or n+3 ≤ n+ ⌊n/2⌋− 2 ≤ r+ c− 2 ≤ n+ ⌊n/2⌋+1,
respectively. Thus the entry (r, c)− is also blue according to Theorem 23, and thus the edges
corresponding to (r, c) and (r, c)− cross each other.

A similar argument shows that for every red entry (r, c) specified by Theorem 23, either
(r, c)+ or (r, c)− is also a red edge.

Second, assume that c− r = n−2, that is (r, c) ∈ {(1, n−1), (2, n)}. If (r, c) = (1, n−1),
then (r, c) is red and because (2n− 4) ≥ n+ ⌈n/2⌉+ 2 for n ≥ 13, it follows that rc crosses
the edge corresponding to (n − 3, n), which is red. If (r, c) = (2, n), then (r, c) is blue and
because ⌊n/2⌋ ≥ 4 for n ≥ 13, it follows that rc crosses the edge corresponding to (1, 4),
which is blue.

Suppose now that the color of (r, c) is not determined by Theorem 23. First assume that
r+ c ∈ {⌊n/2⌋+2, ⌈n/2⌉+2, n+ ⌊n/2⌋+2, n+ ⌈n/2⌉+2}. Again, by Theorem 23 note that
(r, c)− is blue and (r, c)+ is red. Similarly, if r + c = n + 2, then (r, c)− is red and (r, c)+ is
blue. Thus regardless of its color, the edge rc will cross one of the two edges corresponding
to these two entries.

Finally, assume c − r = 2. From Theorem 23, the number of red entries of the form
(t, r+ 1) or (r+ 1, d), with 1 ≤ t ≤ r and r+ 3 ≤ d ≤ n is at least ⌊n/2⌋ − 5 ≥ 1. A similar
statement holds for the number of blue entries of the same form. Thus there is at least one
blue edge (not on the spine) and at least one red edge incident to r + 1. One of these two
edges will necessarily cross the edge rc regardless of its color.

Note that for n ≤ 11 the above approach cannot guarantee that there are no additional
non-crossed edges. For example for n = 11 the element (1, 10) cannot be determined.
However, these small cases can be handled by exhaustive enumeration, which shows that for
crossing optimal drawings there are no such edges for n = 11 and no alternative Hamiltonian
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cycles for n = 9. For n = 5, 7 there exist alternative Hamiltonian cycles of non-crossed edges,
but they do not lead to additional equivalences between the crossing optimal drawings.

Corollary 26. If D and D′ are sphere-homeomorphic crossing optimal 2-page book drawings
of Kn, then M(D) and M(D′) are equivalent.

Proof. If n is even the result is trivial by Theorem 24. If n is odd and n ≤ 11, then using
Theorem 23 we exhaustively found all equivalence classes of crossing optimal drawings. There
are 1, 4, 9, and 25 equivalence classes for n = 5, 7, 9, and 11, respectively. We verified that
all of these equivalence classes were non sphere-homeomorphic. If n ≥ 13 and D and D′

are crossing optimal 2-page book drawings, then by the previous theorem both D and D′

have only one non-crossed Hamiltonian cycle. Thus if H is a homeomorphism of the sphere
sending DS to D′

S, then H must send the Hamiltonian cycle 123 . . . n to itself. It follows
that H restricted to this cycle is the composition of a rotation of the cycle with either the
identity, or the function that reverses the order of the cycle. Moreover, once the edges on
the spine are fixed, the drawing is determined by the colors of the remaining edges. Thus
either H is determined by its action on the cycle, or else H switches the blue edges not
on the spine with the red edges. In other words, M(D′) = M((ha ◦ gb ◦ f i)(D)) for some
i ∈ {0, 1, 2, . . . , n− 1} and a, b ∈ {0, 1}. Thus M(D) and M(D′) are equivalent.

Theorem 27. For n odd, there are at least 2(n−5)/2 pairwise non sphere-homeomorphic
crossing optimal 2-page book drawings of Kn.

Proof. As usual let 1, 2, . . . , n be the vertices of Kn. Let rc be an edge of Kn that is not
on the Hamiltonian cycle H = 12 . . . n, we color rc red or blue according to the following
rule: if r + c ≡ s (mod n) for some integer 2 ≤ s ≤ (n + 1)/2, then we color rc blue, if
r + c ≡ s (mod n) for some integer (n + 5)/2 ≤ s ≤ n + 1, then we color rc red. Finally, if
r + c ≡ (n+ 3)/2 (mod n), then we color rc either red or blue. See (Figure 10.)

We first argue that all of these colorings yield crossing optimal drawings of Kn regardless
of the color of the (n− 3)/2 edges rc for which r + c ≡ (n+ 3)/2 (mod n).

For every 1 ≤ s ≤ n, let Is = {rc edge: rc /∈ H and r + c ≡ s (mod n)}. Note that
|Is| = (n − 3)/2 for all s and

⋃n
s=1 Is is the complete set of edges not in H . Moreover note

that each Is is a matching of pairwise non-crossing edges.

Let rc be an edge such that r+ c ≡ (n+3)/2 (mod n). Assume without loss of generality
that r < c. If td is an edge that crosses rc, then t and d are cyclically separated from
r and c; that is, we may assume that r < t < c and d < r or d > c. To facilitate the
case analysis we may assume that the edges that could cross rc are the edges td such that
r < t < c < d < n+ r, with the understanding that d represents the point d−n when d > n.
Let C = {td edge: r < t < c < d < n + r} and consider the function T : C → C defined by
T (td) = t′d′ where t′ = r + c− t and d′ = r+ c+ n− d. Note that T is well defined because
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Figure 10: The 28 crossing optimal drawings (only 27 non-equivalent) for n = 19 in Theo-
rem 27. They are obtained by assigning arbitrary colors to the crosses in this matrix.

r < t′ < c < d′ < n+ r and T is one-to-one on C. Moreover, note that

t′ + d′ ≡ r + c+ n + r + c− t− d (mod n)

≡ 2(r + c)− (t + d) (mod n)

≡ (n + 3)− (t+ d) ≡ 3− (t + d) (mod n),

so t+ d ≡ s (mod n) with 2 ≤ s ≤ (n + 1)/2 if and only if t′ + d′ ≡ 3− (t + d) ≡ n+ 3− s
(mod n) and (n+ 5)/2 ≤ n+ 3− s ≤ n+ 1. Thus td and T (td) have different colors, which
means that C contains as many red edges as blue edges. Hence rc crosses the same number
of edges independently of its color. This shows that all the drawings we have described have
the same number of crossings. Finally, we note that the drawing for which all the arbitrary
edges have the same color corresponds to the construction originally found by Blažek and
Koman [8] having exactly Z(n) = 1

64
(n− 1)2(n− 3)2 crossings. Hence all the other drawings

described are crossing optimal as well.

We now argue that every drawing constructed here is equivalent to exactly one other
drawing. Let D and D′ be two of the crossing optimal drawings we just constructed and
suppose that M(D) and M(D′) are equivalent. Thus there exists a transformation F : D →
D′ such that F = ha ◦ gb ◦ f i with i ∈ {0, 1, 2, . . . , n − 1} and b, a ∈ {0, 1}. First observe
that under f , g, or h, the absolute value difference of the number of red minus blue edges
remains invariant. Thus the drawing D in which all of the edges in I(n+3)/2 are red can only
be equivalent to the drawing D′ in which all of those edges are blue. These two are indeed
equivalent under the function F = h ◦ g ◦ f (n+1)/2. Now suppose that the edges I(n+3)/2 in D
and in D′ are not all of the same color. Note that f, g, and h send Im into another Im′ , and if
Im is monochromatic (all edges of Im have the same color) in D, then Im′ is monochromatic
in f(D), g(D), and h(D). Since Im is monochromatic in D if and only if m 6= (n + 3)/2,
then F must send I(n+3)/2 to itself. If b = 0, rc ∈ I(n+3)/2, and r′c′ is the image of rc under
F , then r′ + c′ ≡ r − i + c− i (mod n). Thus r′ + c′ ≡ r + c (mod n) if and only if i = 0.
Because the edges I1 in D are blue and the edges I1 in h(D) are red, it follows that a = 0
and thus F is the identity. Last, if b = 1, rc ∈ I(n+3)/2, and r′c′ is the image of rc under F ,
then r′+c′ ≡ (n+1−(c−i))+(n+1−(r−i)) ≡ 2+2i−(r+c) (mod n). Thus r′+c′ ≡ r+c
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(mod n) if and only if i = (n+1)/2. Because the edges I1 in both D and h(f (n+1)/2(D)) are
blue, it follows that a = 1 and thus F = h◦g◦f (n+1)/2. It can be verified that indeed F (D) is
one of the drawings we constructed here, and thus exactly half of the drawings we described
are pairwise non-equivalent. Therefore, by Corollary 26 we have constructed exactly 2(n−5)/2

non sphere-homeomorphic drawings of Kn.

n drawings n drawings n drawings
5 1 17 324 29 38944
7 4 19 748 31 84064
9 9 21 1672 33 180288
11 25 23 3736 35 385216
13 58 25 8208 37 819328
15 142 27 17968

Table 1: The number of non sphere-homeomorphic crossing optimal 2-page book drawings
of Kn for odd n, 5 ≤ n ≤ 37.

The above theorem gives a lower bound of 2(n−5)/2 for the number of non sphere-homeomorphic
crossing optimal drawings. As in the crossing optimal drawings of Theorem 23 there are
5
2
(n − 5) entries with non-fixed colors, we get an upper bound of 25(n−5)/2 non sphere-

homeomorphic crossing optimal drawings. With exhaustive enumeration we have been able
to determine the exact numbers of non sphere-homeomorphic crossing optimal drawings for
n ≤ 37, cf. Table 1. The obtained results suggest an asymptotic growth of roughly 20.54n,
rather close to our lower bound.

5 Concluding remarks

Our approach to determine k-edges in the topological setting is to define the orientation
of three vertices by the orientation of the corresponding triangle in a good drawing of the
complete graph. It is natural to ask whether this defines an abstract order type. To this
end, the setting would have to satisfy the axiomatic system described by Knuth [21]. But
it is easy to construct an example which does not fulfill these axioms, that is, our setting
does not constitute an abstract order type as described by Knuth [21]. It is an interesting
question for further research how this new concept compares to the classic order type, both
in terms of theory (realizability, etc.) and applications.

We believe that the developed techniques of generalized orientation, k-edge for topological
drawings, and ≤≤k-edges are of interest in their own. We will investigate their usefulness for
related problems in future work. For example, they might also play a central role to approach
the crossing number problem for general drawings of complete and complete bipartite graphs.
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