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Abstract

Let S be a set of r red points and b = r + 2δ blue points in general position in the
plane, with δ ≥ 0. A line ` determined by them is balanced if in each open half-plane
bounded by ` the difference between the number of blue points and red points is δ. We
show that every set S as above has at least r balanced lines. The proof is a refinement
of the ideas and techniques of [J. Pach, R. Pinchasi. On the number of balanced lines,
Discr. Comput. Geom., 25 (2001), 611–628], where the result for δ = 0 was proven, and
introduces a new technique: sliding rotations.

1 Introduction

Let B and R be, respectively, sets of blue and red points in the plane, and let S = B ∪R be
in general position. Let r = |R| and b = |B| = r + 2δ, with δ ≥ 0. Furthermore, we are given
weights ω(p) = +1 for p ∈ B and ω(q) = −1 for q ∈ R. Given a halfplane H, its weight is
then defined as ω(H) =

∑
s∈S∩H ω(s). Here and throughout this paper, halfplanes are open

unless otherwise stated.

Definition 1. A line ` determined by two points of S is balanced if the two halfplanes it
defines have weight δ. Observe that this implies that the two points of S spanning ` have
different colors.

The main result of this paper is an elementary, geometric proof for the following lower
bound on the number of balanced lines.

Theorem 1. Let B and R be, respectively, sets of blue and red points in the plane, and let
S = B ∪R be in general position. Let r = |R| and b = |B| = r + 2δ, with δ ≥ 0. The number
of lines defined by two points of S that divide the plane in two halfplanes of weight δ is at
least r. This number is attained if R and B can be separated by a line.

For δ = 0, we obtain the result conjectured by George Baloglou, and proved by Pach and
Pinchasi via circular sequences:

Theorem 2 ([3]). Let |R| = |B| = n. Every set S as above determines at least n balanced
lines. This bound is tight.
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The result for δ > 0 was proved by Sharir and Welzl [4] in an indirect manner, via an
equivalence with the following very special case of the Generalized Lower Bound Theorem.
This motivated them to ask for a more direct and simpler proof.

Let P be a convex polytope which is the intersection of d+4 halfspaces in general position
in Rd. Let its edges be oriented according to a generic linear function (edges are directed
from smaller to larger value; “generic” means that the function evaluates to distinct values
at the vertices of P).

Theorem 3 ([4]). The number of vertices with dd
2e− 1 outgoing edges is at most the number

of vertices with dd
2e outgoing edges.

Finally, let us remark that in [4] it is also shown that Theorem 1 is equivalent to the
following result about halving triangles:

Theorem 4. Every set S ⊂ R3 of 2n + 1 points in general position has at least n2 halving
triangles.

All proofs in this paper can be easily translated to the more general setting of circular
sequences (see [2]).

2 Geometric tools

We assume that coordinate axes are chosen in such a way that all points have different
abscissa. The tools we use are inspired in the rotational movement introduced by Erdős et
al. [1].

Definition 2. Let P ⊆ S. A P k-rotation is a family of directed lines P k
t , where t ∈ [0, 2π] is

the angle measured from the vertical axis, defined as follows: P k
0 contains a single point of P ,

and as t increases, it rotates counterclockwise in such a way that

(i) |P ∩ P k
t | = 1 except for a finite number of events, when |P ∩ P k

t | = 2; and

(ii) whenever |P ∩ P k
t | = 1, there are exactly k points of P to the right of P k

t .

The common point P∩P k
t = {p} is called the pivot, and it changes precisely when |P∩P k

t | = 2.
Observe that P k

0 = P k
2π.

Definition 3. Let `+ and `− denote, respectively, the open halfplanes to the right and to the
left of `. Let ω(`) be the weight of `+. Given a P k-rotation, we say that P k ≥ δ if ω(P k

t ) ≥ δ
for every t ∈ [0, 2π], and similarly for the rest of inequalities. A rotation Bk is δ-preserving if
either Bk ≥ δ or Bk < δ. Symmetrically, Rk is δ-preserving if either Rk ≤ δ or Rk > δ.

Lemma 5. In an Rk-rotation, transitions δ Ã δ + 1 and δ + 1 Ã δ in ω(Rk
t ) are always

through a balanced line. In a Bk-rotation, transitions δ Ã δ − 1 and δ − 1 Ã δ in ω(Bk
t ) are

always through a balanced line.

Proof. When a red point is found during an Rk-rotation, the weight of the halfplane is pre-
served because the pivot point changes. Therefore, the change δ Ã δ + 1 happens when a
blue point is found in the head of Rk

t (Figure 1, left), while δ + 1 Ã δ happens when a blue
point is found in the tail of Rk

t (Figure 1, right). In both cases, the points define a balanced
line. For a Bk-rotation, the proof is identical.
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Figure 1: Transitions in an Rk-rotation are always through a balanced line.

Claim 8.1 in [3] has now a more direct proof:

Lemma 6. If r is odd, there exists a balanced line which is a halving line of S.

Proof. Let k = b r
2c and consider an Rk-rotation. If Rk

0 ≤ δ, then Rk
π > δ, and conversely.

Therefore, there exist transitions δ Ã δ +1 and δ +1 Ã δ in ω(Rk
t ) which, from Lemma 5 are

always through a balanced line. Observe that both transitions are through the same balanced
line, with angles t0 and t0 + π.

Remark 1. Let us observe that Theorem 1.4 in [3], which states that Theorem 2 is true
when R and B are separated by a line `, has now an easier proof: if we start Rk-rotations
with a line parallel to `, for each k there exist exactly one transition δ Ã δ + 1 and one
transition δ +1 Ã δ which, from Lemma 5, correspond always to a balanced line. If r is even,
there are 2 balanced lines for k = 0, . . . , r

2 − 1, for a total of r balanced lines, while if r is odd
there are 2 balanced lines for k = 0, . . . , b r

2c − 1 and 1 balanced line for k = b r
2c.

Remark 2. Lemmas 5 and 6 conclude the proof of Theorem 2 if no Rk-rotation is δ-preserving
or if no Bk-rotation (with k ≥ δ) is δ-preserving. Hence, in the following we assume that there
exists either at least one Rk-rotation or one Bk-rotation (with k ≥ δ) which is δ-preserving.

Lemma 7. Let 0 ≤ j ≤ b r
2c. If Rj > δ then Bj+δ ≥ δ, while if Bj+δ < δ then Rj ≤ δ.

Proof. Consider the line Rj
t0

. The halfplane (Rj
t0

)+ contains j red points and b > j + δ blue
points. Therefore, the line Bj+δ

t0
is to the right of (Rj

t0
)+ and contains at most j red points.

Then, ω(Bj+δ
t0

) ≥ δ. The proof of the second statement is analogous.

The next definition generalizes the concept of P k-rotation in two different ways: parallel
movements are permitted and the number of points to the right of the line can change.

Definition 4. A P -sliding rotation consists in moving a directed line ` continuously, starting
with an `0 which contains a single point p0 ∈ P , and composing rotation around a point of P
(the pivot) and parallel displacement (in either direction) until the next point of P is found.
Furthermore, after a 2π rotation is completed, the line `0 must be reached again.

This movement is clearly a continuous curve in the space of lines in the plane. For instance,
if a line is parameterized as a point in S1 ×R, a P -sliding rotation describes a (non-strictly)
angular-wise monotone curve, with vertical segments corresponding to parallel displacements.

Let Σ be a P -sliding rotation. Let us denote by Σt the line with angle t with respect
to the vertical axis defined as follows: if there is no parallel displacement at angle t, then
Σt denotes the corresponding line. Otherwise, it denotes the leftmost line corresponding to
angle t.

Definition 5. A P -sliding rotation Σ is simple if Σt+π is to the left of Σt for all t ∈ [0, π).
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That Σ ≥ δ, as well as the rest of inequalities, is defined exactly as in Definition 3.
Similarly, a B-sliding rotation Σ is δ-preserving if Σ ≥ δ, while an R-sliding rotation is
δ-preserving if Σ ≤ δ. The following definition is the crux of the rest of the paper.

Definition 6. Let ∆ be the set of all simple, δ-preserving B-sliding rotations and R-sliding
rotations. The waist of a P -sliding rotation Σ ∈ ∆ is

min
t∈[0,π]

|P ∩ Σ−t ∩ Σ−t+π|.

We denote by Γ the sliding rotation of ∆ with the smallest waist.

Note that the set ∆ is non-empty because we have assumed that there exist δ-preserving
Bk- or Rk-rotations, which are a particular type of sliding rotations. Furthermore, the waist
takes only a finite number of values, so it has a minimum. If the minimum is not unique, we
can pick any of the sliding rotations achieving it.

3 Main result

Assume that Γ is a δ-preserving R-sliding rotation (i.e. Γ ≤ δ). In this case, we will manage
to prove that there exist at least r balanced lines. For the case of Γ being a δ-preserving
B-sliding rotation, the same arguments would show that there exist at least b balanced lines.

Lemma 8. Let Γ0 and Γπ be the lines achieving the waist of Γ, let Γ+
0 be the closed halfplane

to the right of Γ0 and let F = R ∩ Γ+
0 . For every k ∈ {0, . . . , |F | − 1}, during an F k-rotation

a balanced line is found. Similarly, let H = R ∩ Γ+
π . For every k ∈ {0, . . . , |H| − 1}, during

an Hk-rotation a balanced line is found.

Proof. Figure 2 illustrates the situation. On the one hand, F k
0 is to the right of Γ0 and,

since Γ is simple, F k
π is to the left of Γπ. This implies that there is a t1 ∈ [0, π] such that

F k
t1 = Γt1 and therefore ω(F k

t1) ≤ δ. On the other hand, F k
0 is to the left of Γπ and F k

π is to
the right of Γ0, therefore, there exists a t2 ∈ [0, π] such that F k

t2 and Γt2+π are the same line
with opposite directions. Since ω(Γt2+π) ≤ δ, then ω(F k

t2) ≥ δ. If ω(Γt2+π) = δ and the line
contains a blue point, then it is a balanced line found in a transition δ Ã δ + 1. Otherwise,
ω(F k

t2) > δ and hence a transition δ Ã δ + 1 has occurred for a t ∈ (t1, t2).
Now, observe that R r F ⊂ Γ0

−. Hence, in the F k-rotation for t ∈ [0, π], all the points
in RrF are found by the head of the line. This implies that a change δ Ã δ+1 in the weight
of the right halfplane can only occur when a blue point is found in the head of the ray (as in
Figure 1, left), hence defining a balanced line. The proof for H is identical.

Observe that balanced lines found in this process are different, because they have exactly k
points of F , respectively H, to the right.

Let now CΓ
t be the central region of the sliding rotation Γ at instant t, defined as CΓ

t =
Γ−t ∩ Γ−t+π. Observe that, for the corresponding t, the transitions δ Ã δ + 1 in the proof of
Lemma 8 correspond to balanced lines inside or in the boundary of the central region.

Lemma 9. Let G = R r (F ∪ H). For k ∈ {0, . . . , d|G|/2e − 1}, every Gk-rotation has
transitions δ Ã δ + 1 and δ + 1 Ã δ, which correspond to lines inside or in the boundary of
the central region., i.e., for the corresponding t, Gk

t ∈ CΓ
t .
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Figure 2: Illustration of the proof of Lemma 8.

Proof. Let us consider first the case when r is odd and k = b|G|/2c. Gk
0 and Gk

π are the same
line with opposite directions. Therefore, if ω(Gk

0) ≤ δ then ω(Gk
π) > δ and there must be

at least two transitions as stated. These transitions correspond to lines in the central region
because Γ is simple.

For the rest of cases, observe that, by construction, Gk
0 ∈ CΓ

0 . According to the value of
ω(Gk

0), we distinguish two cases:

• ω(Gk
0) ≤ δ. If there exist some values for which Gk

t = Γt, let t1 and t2 be, respectively,
the minimum and maximum of them. If there is no such value, take t1 = t2 = 2π. If
Gk takes the value δ + 1 in the interval (0, t1) it must have transitions δ Ã δ + 1 and
δ+1 Ã δ, and the same is true for (t2, 2π). Finally, observe that Gk must take the value
δ +1 at least once, because in other case the sliding rotation obtained by concatenating
Gk in (0, t1), Γ in (t1, t2) and Gk in (t2, 2π) would be a δ-preserving sliding rotation of
waist smaller than the waist of Γ.

• ω(Gk
0) > δ. If there exist some values for which Gk

t = Γt, let t1 and t2 be, respectively,
the minimum and maximum of them. Gk

t takes the value δ in the intervals (0, t1) and
(t2, 2π) and therefore the lemma follows. In other case, if Gk

t takes the value δ in the
central region, it must have also transition δ Ã δ + 1. Finally, if ω(Gk

t ) > δ for all
t ∈ [0, 2π] we could construct a sliding rotation Σ contradicting the choice of Γ: for
each t, consider as Σt the parallel to Gk

t which passes through the first blue point to the
right of Gk

t . It is easy to see that Σt ≥ δ, because between Γt and Gk
t there are always

at least two blue points.

The following lemma, which already appeared as Claim 6.4 in [3], will be enough to
conclude the proof of Theorem 2.

Lemma 10. Transitions δ Ã δ + 1 and δ + 1 Ã δ in a Gk-rotation are always either a
balanced line or a δ + 1 Ã δ transition in an F j-rotation, j ∈ {0, . . . , |F | − 1} or an Hj-
rotation, j ∈ {0, . . . , |H| − 1}.
Proof. On the one hand, a balanced line is achieved if there is such a transition because a
blue point is found. See Figure 1. On the other hand, if the point inducing the transition
is r ∈ R, then necessarily r ∈ R r G (since the Gk-rotation changes pivot whenever a point
of G is found). Figure 3 illustrates that a δ + 1 Ã δ transition appears for an F j-rotation
with pivot g, both if f ∈ F is found in the tail (left picture) or if f ∈ F is found in the head
(right picture). Note that in the right picture the weight of both halfplanes is δ +1. The case
in which the point found is h ∈ H works similarly.
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Figure 3: Transitions when a point f ∈ F ⊂ R found in a Gk-rotation induces a δ + 1 Ã δ
transition in an F j-rotation. In both cases, the pivot is g.

Proof of Theorem 1.

a) Lemma 8 gives |F |+ |H| different balanced lines.

b) Lemmas 9 and 10 give |G| lines which are, either a balanced line, or a δ + 1 Ã δ
transition at the central region for an F j- or Hj-rotation.

c) Each δ+1 Ã δ transition in b) forces a new δ Ã δ+1 transition at the central region for
an F j- or Hj-rotation which correspond, as in the proof of Lemma 8, to a new balanced
line. ¤
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