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Abstract

An intriguing conjecture of Nandakumar and Ramana
Rao is that for every convex body K ⊆ R2, and for
any positive integer n, K can be expressed as the
union of n convex sets with disjoint interiors and each
having the same area and perimeter. The �rst di�cult
case - n = 3 - was settled by Bárány, Blagojevi¢, and
Szucs using powerful tools from algebra and equivari-
ant topology. Here we give an elementary proof of
this result in case K is a triangle.

Introduction

Let K be a convex body in the plane. Nandakumar
and Ramana Rao [6] noticed that if a ham-sandwich
cut for K were rotated through π radians - always
maintaining a bisection of K - then at some point in
this process, K is partitioned into two convex parts
with disjoint interiors, and each having the same area
and perimeter. A slightly more careful argument us-
ing this fact, along with induction, was given to show
that for n = 2k, K can always be partitioned into n
convex subsets, each with the same area and perime-
ter. They made the intriguing

Conjecture 1 For every n ∈ N and all convex bodies
K ⊆ R2, K is the disjoint union of n convex pieces,
each with the same area and perimeter.

The conjecture describes an n−equipartition ofK (be-
cause of the n equal areas) which is in addition fair,
by virtue of the equal perimeters.
Bárány et. al. [2], using heavy-duty tools from alge-

bra and equivariant topology settled the case n = 3:
A 3−fan is a point P in the plane with three rays
emanating from it. It is convex if all angles are at
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most π. It equipartitions K if the three rays divide
K into three regions of equal area, and it is fair, if
these regions also have equal perimeter. Bárány et.
al. showed that there is a convex 3−fan that makes
a fair equi-partition of K. Subsequently, Aronov and
Hubard [1] and then Karasev [5], showed that the con-
jecture was true for n = pk, a prime power, and also
in dimension d ≥ 2, with �area� replaced by �volume�
and �perimeter�, by �surface area�. Blagojevi¢ and
Ziegler found some problems with the proofs in these
two papers, so they established the results - and more
- using di�erent tools. In the present paper, in an at-
tempt to understand some of the geometric features
of this problem and why - or why not - it may be
di�cult, we use (only) elementary methods to study
the conjecture for R2, and when K is a triangle. We
call a 3−fan interior for K if the apex P is interior to
K; otherwise it is exterior. In the �rst case, all three
rays play a role in the partition. In the second case,
the partition is simply via two chords (which might
meet on the boundary of K, but not in its interior).
The �rst fact is

Theorem 1 Every triangle has a fair, equi-
partitioning, exterior 3−fan.

We are able to understand this problem in the tri-
angle case partly due to a simple tool that describes
how perimeters change when a chord in a partition is
moved slightly while still preserving the areas of all
regions.
Let AB and |AB| be, respectively, the segment de-

�ned by points A and B and its length. Vector ~OP
and point P will be identi�ed if the context is clear
enough. The list of points AB · · ·D will be used to
denote the corresponding polygon and, �nally, π(·)
will be the perimeter of the polygon.

Lemma 2 Consider points P ∈ OB and Q ∈ OC
such that |AP | ≤ |AQ|. Let P ′ = tP and let Q′ = 1

tQ
(then the area of OPQ equals the area of OP ′Q′).

1. π(OP ′Q′) and π(BCQ′P ′) are convex functions
of t, achieving the minimum when |OP ′| =
|OQ′|.
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2. If we write ∆π1 = π(AP ′Q′) − π(APQ) and
∆π2 = π(BCQ′P ′) − π(BCQ′P ′) then |∆π1| ≥
|∆π2|.
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In the next section we describe some ideas behind
the proofs for our results. The full proofs will appear
in the actual paper.

1 Some Details

We �x a triangle ∆ = ABC, with A = (0, 0), B =
(b, 0), and C = (x, y), b, x, y ≥ 0, as in the �gure
above. Without loss of generality we put the smallest
angle at C (so all sides have length at least b). If we
take points U = (b/3, 0) and V = (2b/3, 0), ∆ is parti-
tioned into ∆1 = CAU,∆2 = CUV , and ∆3 = CV B,
all with the same area; (we note that this partition
is by a 3−fan with apex at C, and having one ray
is outside ∆). The goal is to rotate the chords CU
and CV in such a way as to maintain equality of all
three areas, but in such a way as to force all three
perimeters to coincide. To unambiguously describe
this process, we place points D and E on the bound-
ary of ∆. Initially both points are placed on C. We
then manipulate the chords DU and EV by moving
the endpoints along the boundary of ∆, thus altering
the three sets in the partition. We use the notation
πi to denote the perimeter of region i.
The case where x = b/2, and ∆ is isosceles, is

easiest. Here, we move chord DU counter-clockwise
(maintaining the area of ∆1 = DAU), and chord EV
clockwise (maintaining the area of ∆3 = EV B) until
U and V coincide at F = (b/2, 0). During this process
the middle region is a pentagon ∆2 = CDUV E, end-
ing at ∆2 = CDFE. If we also keep U + V = (b, 0),
and both U and V the same distance from (b/2, 0),
there will be a position where the partition is fair, by
the intermediate value theorem, since ∆1 and ∆3 ini-
tially have equal perimeters, but larger than that of
∆2, and at the end, π1 = π3 ≤ π2, by virtue of AB
being the smallest side of ∆.
When ∆ is not isosceles, we can take x ≥ b/2 (the

other case being symmetric), so C is to the right of
the midpoint of AB and π1 is larger than either π2
or π3. There are two di�erent possibilities when we

begin moving the chords: either x ≥ 2b/3 and we
start with π1 ≥ π2 ≥ π3, or x ≤ 2b/3 and we start
with π1 ≥ π3 ≥ π2.
For the second, we use the same approach as in the

isosceles case, moving DU counterclockwise, and EV
clockwise - always preserving equal areas. First, DU
moves alone until the perimeters of ∆1 and ∆3 are the
same: Lemma 1 shows that both π1 and π2 decrease,
but π1 more quickly, so at some point, we will have
π1 = π3 > π2 (see case 1 in the �gure, below). At
this point EV also begins to move, but clockwise so
as to preserve three equal areas, but also preserving
π1 = π3. This occurs because, by Lemma 1, as EV
rotates clockwise - preserving areas - π3 and π2 both
decrease. The process ends when U and V coincide
and just as in the isosceles case, the intermediate value
theorem assures that there is a position in this process
where we have a fair 3−equipartition.
When x > 2b/3 the plan is to move both DU and

EV , always preserving equal areas for the triangles
of the partition. First DU moves alone until a point
is reached where two of the perimeters are the same.
Lemma 1 shows that both π1 and π2 decrease, the
�rst more rapidly. Depending on the location of C,
we will have either π1 > π2 = π3 (see case 2 in the
Figure 1) or π1 = π2 > π3 (see case 3). In case 3 we
now also move EV counterclockwise so as to preserve
the area of ∆3 and, according to Lemma 1, increase
π3 while reducing π2. The net result is that the coor-
dinated counterclockwise rotations ofDU and EV can
maintain the equality of π1 and π2 while at the same
time reduce the di�erence between π2 and π3 < π2.
This process terminates either when DAU is isosce-
les or EV is parallel to CB and in both cases π3 is
the largest perimeter; this means we passed a posi-
tion where all perimeters were equal. The argument
for case 2 has EV rotating clockwise, and is similar
to case 1, so we omit it here.

Case 2: π2 = π3 < π1

∆1 ∆2 ∆3

Case 1: π1 = π3 > π2

Case 3: π1 = π2 > π3
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The approach of the arguments above can be ap-
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plied to prove the conjecture when the convex body
is an isosceles triangle. Take points Vi = (ib/n, 0) and
points Ui, i = 0, . . . , n; initially all Ui = C. The n− 1
chords UiVi, i = 1, . . . , n− 1 partition ∆ into n trian-
gles (∆i = Ui−1Vi−1Vi, i = 1, . . . , n), of equal area. In
general, chords UiVi, i ≤ n/2 will be rotated counter
clockwise, and UiVi, i ≥ n/2 rotated clockwise, so as
to preserve areas. First, we rotate U1V1 counterclock-
wise and Un−1Vn−1 clockwise by the same amount,
but preserving the areas of ∆1 and ∆n−1. Lemma 1
and the intermediate value theorem imply that there
is a point where perimeters P1 = P2 = Pn−2 = Pn−1.
Now we move both U1V1 and U2V2 counterclockwise
in a coordinated way so as to preserve equal areas
and perimeters of ∆1 and ∆2, and also make the
corresponding clockwise rotation of Un−2Vn−2 and
Un−1Vn−1 to maintain the equal areas and perime-
ters for ∆n−2 and ∆n−1. We deduce there is a point
where we will have six triangles with equal areas and
perimeters, etc.

2 Discussion

It is clear that an equilateral triangle has two distinct
fair 3−equipartitions that are interior (as well as three
exterior ones - for each vertex, the process outlined in
the previous section produces an equi-partition with
an exterior 3-fan), and that a rectangle has both inte-
rior and exterior ones. Also it is clear that a circle only
has interior 3−fans. It would be interesting to under-
stand when - assuming K has a fair, equi-partitioning
3−fan - whether it may be interior or exterior, or per-
haps either.
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