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Abstract

An intriguing conjecture of Nandakumar and Ramana
Rao is that for every convex body K C R?, and for
any positive integer n, K can be expressed as the
union of n convex sets with disjoint interiors and each
having the same area and perimeter. The first difficult
case - n = 3 - was settled by Barany, Blagojevié¢, and
Szucs using powerful tools from algebra and equivari-
ant topology. Here we give an elementary proof of
this result in case K is a triangle.

Introduction

Let K be a convex body in the plane. Nandakumar
and Ramana Rao [6] noticed that if a ham-sandwich
cut for K were rotated through 7 radians - always
maintaining a bisection of K - then at some point in
this process, K is partitioned into two convex parts
with disjoint interiors, and each having the same area
and perimeter. A slightly more careful argument us-
ing this fact, along with induction, was given to show
that for n = 2F, K can always be partitioned into n
convex subsets, each with the same area and perime-
ter. They made the intriguing

Conjecture 1 For everyn € N and all convex bodies
K C R?, K is the disjoint union of n convez pieces,
each with the same area and perimeter.

The conjecture describes an n—equipartition of K (be-
cause of the n equal areas) which is in addition fair,
by virtue of the equal perimeters.

Béarany et. al. [2], using heavy-duty tools from alge-
bra and equivariant topology settled the case n = 3:
A 3—fan is a point P in the plane with three rays
emanating from it. It is convex if all angles are at
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most 7. It equipartitions K if the three rays divide
K into three regions of equal area, and it is fair, if
these regions also have equal perimeter. Barény et.
al. showed that there is a convex 3—fan that makes
a fair equi-partition of K. Subsequently, Aronov and
Hubard [1] and then Karasev [5], showed that the con-
jecture was true for n = p*, a prime power, and also
in dimension d > 2, with “area” replaced by ‘“volume”
and “perimeter”, by “surface area”. Blagojevi¢ and
Ziegler found some problems with the proofs in these
two papers, so they established the results - and more
- using different tools. In the present paper, in an at-
tempt to understand some of the geometric features
of this problem and why - or why not - it may be
difficult, we use (only) elementary methods to study
the conjecture for R?, and when K is a triangle. We
call a 3—fan interior for K if the apex P is interior to
K; otherwise it is exterior. In the first case, all three
rays play a role in the partition. In the second case,
the partition is simply via two chords (which might
meet on the boundary of K, but not in its interior).
The first fact is

Theorem 1 Every triangle has a fair, equi-
partitioning, exterior 3—fan.

We are able to understand this problem in the tri-
angle case partly due to a simple tool that describes
how perimeters change when a chord in a partition is
moved slightly while still preserving the areas of all
regions.

Let AB and |AB]| be, respectively, the segment de-
fined by points A and B and its length. Vector OP
and point P will be identified if the context is clear
enough. The list of points AB--- D will be used to
denote the corresponding polygon and, finally, (-)
will be the perimeter of the polygon.

Lemma 2 Consider points P € OB and Q € OC
such that |AP| < |AQ|. Let P' = tP and let Q' = 1Q
(then the area of OPQ equals the area of OP'Q’).

1. 7(OP'Q’) and 7(BCQ'P’) are convex functions
of t, achieving the minimum when |OP'| =

0Q'|.
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2. If we write Am; = 7w(AP'Q') — m(APQ) and
Amy = 1(BCQ'P') — n(BCQ'P’) then |Am| >
|A7T2|.

0] P P B

In the next section we describe some ideas behind
the proofs for our results. The full proofs will appear
in the actual paper.

1 Some Details

We fix a triangle A = ABC, with A = (0,0),B =
(b,0), and C = (x,y), b,z,y > 0, as in the figure
above. Without loss of generality we put the smallest
angle at C (so all sides have length at least b). If we
take points U = (b/3,0) and V' = (2b/3,0), A is parti-
tioned into Ay = CAU, Ay = CUV, and A3 = CV B,
all with the same area; (we note that this partition
is by a 3—fan with apex at C, and having one ray
is outside A). The goal is to rotate the chords CU
and CV in such a way as to maintain equality of all
three areas, but in such a way as to force all three
perimeters to coincide. To unambiguously describe
this process, we place points D and E on the bound-
ary of A. Initially both points are placed on C. We
then manipulate the chords DU and EV by moving
the endpoints along the boundary of A, thus altering
the three sets in the partition. We use the notation
m; to denote the perimeter of region i.

The case where © = /2, and A is isosceles, is
easiest. Here, we move chord DU counter-clockwise
(maintaining the area of Ay = DAU), and chord EV
clockwise (maintaining the area of A; = EV B) until
U and V coincide at F' = (b/2,0). During this process
the middle region is a pentagon Ay = CDUV E, end-
ing at Ay = CDFE. If we also keep U +V = (b,0),
and both U and V the same distance from (b/2,0),
there will be a position where the partition is fair, by
the intermediate value theorem, since A; and Ag ini-
tially have equal perimeters, but larger than that of
Ay, and at the end, m; = 73 < 7o, by virtue of AB
being the smallest side of A.

When A is not isosceles, we can take x > b/2 (the
other case being symmetric), so C is to the right of
the midpoint of AB and 7 is larger than either mo
or 3. There are two different possibilities when we

begin moving the chords: either > 2b/3 and we
start with m; > m > 73, or < 2b/3 and we start
with 1 > 73 > m9.

For the second, we use the same approach as in the
isosceles case, moving DU counterclockwise, and EV
clockwise - always preserving equal areas. First, DU
moves alone until the perimeters of A; and A3 are the
same: Lemma 1 shows that both 7 and 75 decrease,
but 7; more quickly, so at some point, we will have
w1 = m3 > 7o (see case 1 in the figure, below). At
this point E'V also begins to move, but clockwise so
as to preserve three equal areas, but also preserving
w1 = w3. This occurs because, by Lemma 1, as EV
rotates clockwise - preserving areas - w3 and 7y both
decrease. The process ends when U and V' coincide
and just as in the isosceles case, the intermediate value
theorem assures that there is a position in this process
where we have a fair 3—equipartition.

When z > 2b/3 the plan is to move both DU and
EV, always preserving equal areas for the triangles
of the partition. First DU moves alone until a point
is reached where two of the perimeters are the same.
Lemma 1 shows that both 7 and 7y decrease, the
first more rapidly. Depending on the location of C,
we will have either 7y > mo = 73 (see case 2 in the
Figure 1) or my = mg > w3 (see case 3). In case 3 we
now also move EV counterclockwise so as to preserve
the area of Az and, according to Lemma 1, increase
w3 while reducing mo. The net result is that the coor-
dinated counterclockwise rotations of DU and EV can
maintain the equality of 71 and mo while at the same
time reduce the difference between 7y and 73 < .
This process terminates either when DAU is isosce-
les or E'V is parallel to C'B and in both cases 73 is
the largest perimeter; this means we passed a posi-
tion where all perimeters were equal. The argument
for case 2 has E'V rotating clockwise, and is similar
to case 1, so we omit it here.
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Case 3: m = mg > 73

The approach of the arguments above can be ap-
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plied to prove the conjecture when the convex body
is an isosceles triangle. Take points V; = (ib/n,0) and
points U;,i = 0, ..., n; initially all U; = C. The n—1
chords U;V;,i =1,...,n — 1 partition A into n trian-
gles (A; =U;—1V;—1V;,i =1,...,n), of equal area. In
general, chords U;V;,i < n/2 will be rotated counter
clockwise, and U;V;,i > n/2 rotated clockwise, so as
to preserve areas. First, we rotate U;V; counterclock-
wise and U,_1V,,—1 clockwise by the same amount,
but preserving the areas of A; and A,_;. Lemma 1
and the intermediate value theorem imply that there
is a point where perimeters Py = P, = P,,_o = P,,_1.
Now we move both U;V; and Uy V5 counterclockwise
in a coordinated way so as to preserve equal areas
and perimeters of A; and As, and also make the
corresponding clockwise rotation of U,_oV,_o and
U,_1V,_1 to maintain the equal areas and perime-
ters for A, _o and A,,_1. We deduce there is a point
where we will have siz triangles with equal areas and
perimeters, etc.

2 Discussion

It is clear that an equilateral triangle has two distinct
fair 3—equipartitions that are interior (as well as three
exterior ones - for each vertex, the process outlined in
the previous section produces an equi-partition with
an exterior 3-fan), and that a rectangle has both inte-
rior and exterior ones. Also it is clear that a circle only
has interior 3—fans. It would be interesting to under-
stand when - assuming K has a fair, equi-partitioning
3—fan - whether it may be interior or exterior, or per-
haps either.
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