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Abstract

In this paper we present linear time algorithms for computing the shortest path tree from
a point and the weak visibility polygon of an arc inside a triangulated curved polygon. We
present also a linear time algorithm for computing the planar subdivision (in the parametric
space) of the set of rays emanating from a fixed arc, such that each face of the subdivision
corresponds to rays hitting the same arc of the polygon. Although these results, which involve
nontrivial generalizations of known results for rectilinear polygons, may have some interest
on its own right, the main result of this paper is a linear time algorithm for computing the
conic (circular, elliptic, parabolic and hyperbolic) visibility polygon of a point inside a simple
polygon. The main advantage of our technique over previous results on circular visibility is
that it provides a simple, unified approach to conic visibility. Finally, we present a linear time
algorithm for computing the planar subdivision, in the parametric space, of two-parametric
families of conic rays emanating from a fixed point, such that each face of the subdivision
corresponds to conic rays hitting the same edge of the polygon. All these algorithms are
asymptotically optimal.

Key words. Computational geometry, Planar subdivision, Shortest path, Ray shooting,
Curved polygon, Splinegon, Curved triangulation, Circular visibility, Conic visibility.

1 Introduction

The problems of shortest paths and visibility inside simple polygons have been extensively studied
in the last two decades. Actually, they are in the core of the origins of Computational Geometry.
There are optimal algorithms for computing the shortest path tree from a point (Guibas et al. [12]),
the visibility polygon from a point (ElGindy and Avis [9] and Lee [14]), the weak visibility polygon
from an edge (Guibas et al. [12], Lee and Lin [15] and Toussaint [21]). There are also optimal
algorithms to decide if a polygon is star-shaped (Lee and Preparata [16]), to decide if a polygon is
weakly visible from an edge (Avis and Toussaint [3]) and to triangulate a polygon (Chazelle [5]).
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Finally, the problem of computing the first intersection of an arbitrary ray in O(logn) time has
been solved with O(nlogn) preprocessing time by Chazelle and Guibas [6] and with optimal O(n)
preprocessing time by Guibas et al. [12].

There are also a number of variations on this subject. Among them, circular visibility was
introduced by Agarwal and Sharir [2]. Besides being a natural extension of linear visibility, circular
visibility can model some physical systems, like trajectories of electrically charged particles in a
uniform magnetic field. In that paper, the problem of computing the circular visibility polygon
from a point is solved in O(nlogn) time and the problem of computing the first intersection of a
circular ray emanating from a fixed point is solved in O(logn) time with O(nlogn) preprocessing.
This results have been improved by Chou and Woo [7], who give a linear time algorithm for
computing the circular visibility polygon from a point and by Agarwal and Sharir [1], who solve
the general ray tracing problem, that is, computing the first intersection of a circular ray starting
from an arbitrary point. The first intersection can be computed in O(log4 n) time with O(n log® n)
preprocessing.

Other possible variations involve to generalize the concept of rectilinear polygon to the concept
of curved polygon. The definition of curved polygon that we are going to follow in this paper is
the splinegon introduced by Dobkin and Souvaine [8]: a curved polygon is called a splinegon if
each curved edge is contained in the boundary of its convex hull. There are other non-equivalent
definitions like the pseudo-polygons introduced by O’Rourke and Streinu [19].

Generalizations of rectilinear visibility to circular visibility (and, more generally, to conic visibil-
ity) and to visibility inside splinegons can be closely related via some geometric transformations as
proposed in [10, 11]. In order to attack circular visibility from a point p, we consider the inversion
with respect to p, whose analytic expression is

* r—p
o=l 7

We observe that circles passing through p are mapped to lines, the boundary of the polygon is
transformed in a splinegon with circular arcs as edges and the interior of the polygon is mapped
to the exterior of the splinegon. p is a singular point of the transformation that is mapped to co
and, therefore, the circular visibility polygon of p is mapped to the set of points that are linearly
visible from co outside the splinegon. In the same way, a circular ray emanating from p is mapped
to a rectilinear ray emanating from co and the problem of circular ray shooting from p is reduced
to the problem of rectilinear ray shooting from oo outside a splinegon.

This transformation can be generalized to attack elliptic, parabolic and hyperbolic visibility
with the same technique, if we restrict ourselves to three-parametric families of conics. From this
point of view, first-degree (linear) visibility, is generalized to second-degree (conic) visibility, which
is a natural extension from the algebraic point of view. Moreover, the field of potential applications
also grows, because conic visibility allows us to model a larger class of physical systems like, for
example, parabolic trajectories of objects under the gravity or trajectories of charged particles
inside electromagnetic fields created by other particles.

In this way, we reduce the problem of conic visibility in rectilinear polygons to the problem
of linear visibility in splinegons. The latter problem involves nontrivial generalizations of the
techniques used to solve the problem in simple polygons and have some interest on its own right.

In order to compute visibility from an edge in a splinegon, we need to compute the shortest
path tree (which is, as well as in the rectilinear case, the key tool of the method). Melissaratos
and Souvaine [18] show that the shortest path tree of a point inside a splinegon can be computed
in O(n) time. We give a simpler approach to the problem when the input of the algorithm is a
triangulated splinegon. It is worth noting that this will be the case in the problem of conic visibility
that we address in this paper.

The rest of the paper is organized as follows: in the next section we introduce formal definitions
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Figure 1: Splinegon and curved triangulation.

and basics results, Section 3 presents an algorithm for computing pseudo-triangulations, Section 4
deals with the problem of computing the shortest path tree, in Section 5 we apply this results to
the original problems and, finally, Section 6 concludes with some remarks.

2 Preliminaries

A splinegon P is described by an ordered list of arcs a1, as ..., a, and the vertices of P are denoted
by v1,va,...,vn, where v; = @;_1 Na; (hereafter, indices are understood modulo n). The polygon
is oriented in positive (counterclockwise) direction and we assume that the arcs a1, as. .., a, define
a Jordan curve which is the boundary of the polygon and will be denoted by OP. By definition of
splinegon, each arc a; is contained in the boundary of its own convex hull and we say that an arc
is convex if it rotates left or concave if it rotates right when described in the prescribed direction
(see Figure 1.a).

A curved triangulation T'(P) of the splinegon P is a partition of the polygon into n — 2 curved
triangles such that each arc of the triangulation is also contained in the boundary of its own convex
hull (see Figure 1.b). The diagonals of the triangulation are the arcs which are not part of 9P.
Like in the linear case, a curved triangulation has n — 3 diagonals and the dual graph is a tree,
that we shall denote by D(T). However, unlike in the rectilinear case, there are splinegons that do
not have curved triangulations.

Given two points p, ¢ € P, the shortest path between p and ¢, denoted by m(p, ¢), is defined as
the curve of minimum total length joining p and ¢ without intersecting the exterior of P. Bourgin
and Renz [4] have shown that, because P is simply connected, 7 (p, ¢) is always unique. Moreover,
it is composed of a finite number of segments and curved arcs which are always part of 9P (see
Figure 2.a). Given a point p € P, the shortest path tree for p, denoted by w(p), is the union of the
shortest paths from p to all the vertices of P (see Figure 2.b).

Lemma 1 Let P be a splinegon with n arcs and p,q € P:

i) The number of arcs of n(p,q) is at most 2n + 1.

ii) The number of arcs of n(p) is at most 3n.

Proof: The intersection between 7(p,q) and each arc of P is connected and, therefore, the
number of curved arcs of 7(p, ¢) is at most n. For the rectilinear segments of the path, we observe
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Figure 2: Shortest path and shortest path tree.

that they are separated either for vertices of P or for sub arcs of 9P. Because the number of such
vertices and arcs is at most n (a sub arc for each concave edge of P and a vertex for each convex
edge of P), we conclude that the number of rectilinear arcs of m(p, q) is at most n + 1 and thus
the total number of arcs is at most 2n + 1.

For the second part of the lemma, we are going to bound the number of vertices of w(p). There
are n + 1 fixed vertices (p and the n vertices of the polygon) and a number of additional vertices
in the interior of concave arcs of 9P. Let £ be the set of edges of m(p) with at least one additional
vertex and direct each edge of £ from p to the leaves. We observe that the number of edges of
£ incident in a concave arc of 9P is at most 2. Moreover, both edges are tangent to the arc and
each of them 1s directed towards a different vertex of the arc. Finally, we observe that for two
consecutive arcs, it is not possible to have edges directed to the common vertex in both arcs and
that, if the common vertex has in degree one, none of them exists. Therefore, we have shown that
|€] < n and that the number of additional vertices is at most 2n. d

The main difficulty to compute shortest paths in a splinegon using an incremental algorithm is
that, unlike in the rectilinear polygon case, curved triangulations are not the appropriate tool. We
recall that the algorithm of Guibas et al. [12] for computing 7(p) inside a rectilinear polygon P uses
a triangulation of P in order to generate a chain of polygons Py C P, C ... C P, where Py is the
triangle containing p and such that P;11 is obtained by adding a new triangle of the triangulation
to P;. During the algorithm, the boundaries of P; are considered as barriers for visibility, which
can lead to incorrect results in the conic visibility case. In order to overcome this difficulty, we
introduce the concept of pseudo-triangulation.

3 Pseudo-triangulations

Given a splinegon P and a triangulation T'(P), we call pseudo-triangulation of P associated to
T(P) to the partition S(P) obtained by substituting each diagonal of T'(P) by the shortest path
between the end-points of the diagonal (see Figure 3 for an example).

Lemma 2 Let P be a splinegon with n arcs and let S(P) be a pseudo-triangulation of P. Then
we have:

i) The number of vertices of S(P) is at most 3n — 6.
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Figure 3: Curved triangulation and pseudo-triangulation.

ii) The number of arcs of S(P) is at most 4n — 9.

Proof: We present a constructive proof, which is also the key for the algorithm in the next section.
Let D(T) be the dual tree of the triangulation T with the edges oriented from the locally concave
to the locally convex triangle.

We substitute each diagonal for the corresponding shortest path in the following way: we choose
a sink of D(T) (i.e. a vertex with out degree zero) and substitute the diagonal corresponding to
one of its edges by the shortest path between the vertices. In this way, at most three new arcs
and two new vertices can be generated (see Figure 4.a for an example). The triangle becomes a
generalized triangle, because one of its edges has been substituted by a concave chain.

If the diagonal that is going to be deleted belongs to a generalized triangle, the upper bound
for the number of new vertices and arcs is the same because the edges of the generalized triangle
are concave or convex (see Figure 4.b for an example). Therefore, the total number of generated
arcs is, at most, 3(n —3) which, all along with the n arcs of the boundary, give the bound of 4n —9.
In the same way, the number of generated vertices is, at most, 2(n — 3) for a total of, at most,
3n — 6 vertices. d

In order to simplify the notation, here and hereafter we call polygons and triangulations to
splinegons and curved triangulations, respectively. The first step in order to compute the shortest
path tree of a point in a triangulated polygon is to compute a pseudo-triangulations from the given
triangulation. This process follow the same ideas introduced in the proof of Lemma 2.

A pseudo-triangulation has two types of vertices: we call principal vertices to the original
vertices of the polygon and additional vertices to the vertices that are added in the construction
of the pseudo-triangulation. The faces of the pseudo-triangulation are called generalized triangles
and the interior arcs are called diagonal segments. A generalized edge is a curve contained in the
boundary of a generalized triangle ¢ such that it does not contain any principal vertex in its interior,
is contained in the boundary of its own convex hull (i.e. it is convex or concave as seen from )
and is maximal, 1.e. 1t 18 not contained in any other curve with the same properties. Generalized
triangles are defined by three generalized edges.

The algorithm proceeds by substituting diagonals in the triangulation by generalized edges,
imitating the following physical process: in the beginning, all the boundary arcs and diagonals
are considered rigid and then, one at a time, interior diagonals are considered as rubber bands
with fixed end-points and let them reach the equilibrium state. This process gives us a pseudo-
triangulation if the order of processing of the diagonals is carefully chosen from the directed dual
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Figure 4: Tllustration of the algorithm Pseudo_Triangulation.

graph of the triangulation.

Algorithm Pseudo_Triangulation

Input A polygon P with triangulation T'(P).

Output Pseudo-triangulation S(P).

begin

Step 0 Initialize S = T.

Step 1 Compute the dual tree D(T) and direct each edge from the locally concave triangle to the locally
convex triangle.

Step 2 While D(T') is not trivial:

a) Select v(t), a vertex of D(T') with out degree zero (corresponding to the triangle ¢ € T').

b) Select an edge of D(T)), e(t), incident to v(¢). Let (uyu2)” be the diagonal of ¢ correspond-
ing to e(t) (us denotes the remaining principal vertex).

c) Let x be the diagonal segment(s) of m(u1, ua):

If u; and uoy are visible inside ¢, then © = uyus.

If (v1us2)” and (uguz)™ are convex in ¢t (Figure 5.a), * = Uyuz or = Uyuz U Uzls.
If (ugusz)”™ is concave and (uzui)” is convex (Figure 5.b), let z be the point of support
of uy in (ugugz)™. Then x = Zuy.

If (ugusz)”™ is convex and (usui)” is concave (Figure 5.c), let z be the point of support
of us in (usuy)”. Then = uzz.

If (uous)™ and (usuy)” are concave (Figure 5.d), let Z1zz be the segment of support
of (ugus)™ and (ugui)”™. Then z = Z1z3.

d) In S, delete (u1u2)” and insert m(ujus). In D(T), delete e(t).
e) Delete the vertices of D(T) with degree zero.
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Figure 5: Computing generalized edges.

end

Theorem 1 The algorithm Pseudo_Triangulation computes a pseudo-triangulation of P in optimal
linear time.

Proof: In order to prove the correctness of the algorithm, we make the following observations:

- Step 2.a. In a non trivial, directed forest there always exists at least one sink.

- Step 2.b. D has no vertices with degree zero because of step 2.e and v(t) has out degree zero.
Therefore, ¢ has at least one convex diagonal.

- Step 2.c. In order to show that m(u1, us2) is computed correctly, we start by observing that
m(u1, ug) is inside ¢. Suppose, on the contrary, that there exists y € m(u1,u2) such that
y & t. Then, m(uy,us) cuts twice an arc of ¢ that has to be a concave (from t) diagonal,
contradicting the fact that the out degree of v(t) is zero. Finally, we observe that the
computation of 7(uy,us) is reduced to compute lines of support because generalized edges
are convex or concave.

The rest of the steps of the algorithm are obvious. Furthermore, because all the diagonals are
substituted by shortest paths, the result is a pseudo-triangulation of P.

The complexity of step 1 is O(n). For the step 2, we observe that, in each iteration, the
complexity of 2.a and 2.b is O(1), 2.c has complexity proportional to the number of arcs between
ug and the point(s) of support, 2.d takes constant time and 2.e has complexity proportional to the
number of deleted vertices. Only 2.c requires an additional observation: the arcs processed when
looking for the segment & are not processed again, because they cannot belong to generalized edges
of generalized triangles that will be processed later on. Therefore, the complexity of step 2 is also
linear. We close the proof observing that, because S has linear size, the algorithm is asymptotically
optimal. a
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Figure 6: Examples of funnels.

4 Shortest path tree

In this section we present an incremental algorithm for computing the shortest path tree of a point
inside a polygon following the ideas of Lee and Preparata [17] and Guibas et al. [12]. First, we
compute the tree inside the generalized triangle containing the point, taking into account all the
vertices of the pseudo-triangulation. Then, we extend the tree to an adjacent generalized triangle,
until the whole polygon has been processed.

Let y and z the end-points of a diagonal segment s and w the point where curves m(p,y) and
n(p, z) separate. The funnel of s, denoted by f(s), is the pair of curves m(w,y) and 7(w, z), w is
the vertex of the funnel and s the lid of the funnel. When oriented from the vertex, one of the
curves of f(s) is convex and the other one is concave (see Figure 6.a). The funnel of a sub arc of
a generalized edge is defined in an analogous way (see Figure 6.b).

Let ¢ be the generalized triangle adjacent to f(s). The main step of the algorithm is to compute,
starting from f(s), the shortest paths to all the vertices of t. Let (ujus)”™ be the generalized edge
containing s. First, we add (zu1)” and (yus)”™ to f(s) (see Figure 7.a) and then we compute the
shortest paths to the rest of vertices of ¢, starting from the third principal vertex of ¢.

In order to achieve linear complexity, we need to represent the funnels as finger trees, introduced
by Guibas et al. [13]. Let L be an ordered list with n elements, L is the sublist with the & first
elements of I and L, the sublist containing the rest of the elements of L. If F'| Fy and F% denote
finger trees storing these lists, the following operations take O(log(min{ k,n — & })) time:

- Find the k-th element in F;

- Split F into Fy and Fy;
- Merge F} and Fy to obtain F.

Algorithm Shortest Path_Tree
Input A polygon P, a point p € P and a pseudo-triangulation S(P).

Output The shortest path tree m(p).
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Figure 7: Computing shortest paths.

begin
Step 0 Initialize # = {p} and F' = 0.
Step 1 Locate the generalized triangle ¢y containing p.
Step 2 Compute the shortest paths from p to the vertices of ¢g.
Step 3 For each diagonal segment s € 0tg, compute f(s) and insert it in F.
Step 4 While F' has a funnel whose lid is not on the boundary of P:

a) Select a funnel f(s) € F such that s ¢ 0P (we assume that s = ¥z with the positive
orientation of f(s)).

b) Select the generalized triangle ¢ adjacent to f(s). Let uy, us and uz be the vertices of ¢
and assume that s € (ujua)”.

¢) Let Cy and C5 be the chains of 9t between y and us and between z and wuy, respectively
(observe that C has positive orientation while C's has negative orientation). Insert Cy and

Cy in m(p) and f(s).
d) Construct the funnels corresponding to the diagonal segments of C'; and C' and insert them
in I,
e) For us:
i) Compute m(w, ug), where w is the vertex of f(s):
«) Compute the segment of support Z1z3 defining 7(w, uz). 1 € f(s) and we assume
that 22 € (ujus)” (see Figure 7.b for an example). We observe that the case
X1 = Ts = uq is also possible.
3) Divide the funnel f(s) into f(s1) and f(s2) in such a way that f(s1) is on the right
of m(w, us) (oriented from w to us).
i) Let C5 be the chain of m(w, us) between x5 and u3. Construct the funnels corresponding
to the segments of C'3 and add them to F.

iii) lterating the process of step 4.e.i, compute the shortest paths between w and the
vertices of the arc (u122)” inserting in I’ the funnels that are generated in the process.



iv) Repeat previous step for the vertices of the arc (usus)”™.

end

Theorem 2 The algorithm Shortest_Path_Tree computes w(p) in optimal linear time.
Proof: In order to prove the correctness of the algorithm, we make the following observations:

- Step 4.b. Because s is a diagonal segment, there exists a triangle ¢ adjacent to s.

- Step 4.c. In order to add C; and C5 to f(s), it is enough to construct finger tree for these
chains and add them to the finger tree of f(s).

- Step 4.ed. We compute the segments of support between (usuz)™ and (uszui)”™ to f(s) and
choose the appropriate one.

- Step 4.e.1i. We proceed in the same way as in step 4.c.

- Step 4.e.aii. This step is a repeated application of step 4.e.1.

The complexity of steps 1, 2 and 3 is clearly O(n). For step 4, we first analyze the complexity of
a single iteration: steps 4.a and 4.b have O(1) complexity, while steps 4.c and 4.d have complexity
O(|C1| 4 |Ca|). In step 4.e.i we compute the segment of support between f(s) and the curve ~,
where v = (ugu2)” U (uguz)” if both are concave in ¢, ¥ = (uguz)™ if only (uaus)” is concave,
v = (usuy)” if only (uzuy)” is concave and v = {us} if both are convex. In order to do this
efficiently, we need to construct a finger tree for 4. The segment of support divides v into two
curves 1 and v, and can be computed in time O(log(min{|¥y1], |y2]}) + log(min{|f(s1)], | f(s2)|})).
Finally, the step 4.e.ii has complexity O(|C3|). We shall deal with the complexity of steps 4.e.iii
and 4.e.iv together with the global complexity of step 4.e.i.

The global complexity of steps 4.a and 4.b is O(n). Steps 4.c and 4.d have also O(n) global
complexity because the chains Cy and Cs take part in a single iteration and the O(n) funnels have
constant complexity. For the same reasons, the overall complexity of step 4.e.ii is O(n).

In steps 4.e.i we construct the finger trees for v curves with global complexity O(n), because
the overall size of these curves is linear. In steps 4.e.i, 4.e.iii and 4.e.iv we compute the segments
of support of the funnels corresponding to the vertices of v curves, so it only remains to analyze
the complexity of the subdivision of the funnels and v curves.

This analysis is analogous to the one in [12]: consider a finger tree with size m corresponding
to a funnel or to a y-curve and let n be the number of pending divisions. Then, the complexity of
the global process, T'(n,m), verifies the following recursive relation:

T(n,m) <T(ni,my)+ T(n2,ma) + clog(min{ my, ms })

where ¢ is a positive constant and logarithms are in base 2. Furthermore, we have that n; + ny =
n—1and my +mg < m+4. Taking into account that for the cases with n4+m <7, T(n,m) <1,
we can use induction to show that

1 fn4+m<7
e(n+ m—logm—4) otherwise

T(o,m) < {

and, therefore, the total complexity of steps 4.e.i, 4.e.iii and 4.e.iv is O(n).

Finally, it is obvious that the algorithm is asymptotically optimal because m(p) has linear size.

d

10
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Figure 8: Contribution of a; to V(a1) and subdivision of a;.

5 Applications

Shortest path trees in splinegons can be applied to compute the weak visibility polygon from an
arc and to solve the ray tracing problem. They can also be applied to compute conic (circular,
elliptic, parabolic or hyperbolic) visibility polygons of a point inside a rectilinear polygon and to
solve the ray tracing problem for conic rays emanating from a fixed point.

5.1 Weak visibility polygon from an arc

We say that the point ¢ is weakly visibly from the arc a if there exists a point p € a such that p and
q are visible. The weak visibility polygon of a, denoted by V' (a), is the set of points that are weakly
visible from a. V'(a) is a splinegon whose boundary contains segments and arcs and sub arcs of 9 P.
Furthermore, arcs of 9P appear in V(a) in the same order as in P and each arc of P contributes
to V(a) with at most one arc. Hereafter, we assume that a = a;. The following observation, which
is well known for rectilinear polygons, can be easily generalized to splinegons: a; contributes to
V(ay) if and only if 7(vi, vig1) N w(va, v;) = @. Furthermore, let wy be the last common point of
m(v1,v;) and m(vy, viy1) and wsy the last common point of w(ve, v;) and m(va, v;41). Let s1 and sq
be the first segments of (w1, v;) and 7(wa, v;41), respectively. Then, the sub arc of a; visible from
ay can be obtained computing the first intersections of the rays defined by s; and s2 with a; (see
Figure 8.a).

With this observations and the previous lemma in mind, we can use m(v1) and m(v2) in order
to compute V(ay) in linear time. Then we have shown:

Theorem 3 The problem of computing the weak visibility polygon from an arc of a triangulated
splinegon has linear complexity.

5.2 Ray tracing

The set of lines in the plane is a biparametric family. Although it is not well defined for vertical
lines, the most common parameterization maps the line r : y = az + b to the point (a,b). In order
to solve the ray tracing problem, we compute the wvisibility diagram of an arc of the polygon. This
diagram is a subdivision of the parametric space of rays emanating from the arc, such that each
face of the subdivision corresponds to rays hitting the same arc of the polygon. Therefore, the

11



Figure 9: Constructing the subdivision.

problem of ray tracing is reduced to the problem of point location in the visibility diagram. In this
section we show how the visibility diagram of an arc (say a;) of a splinegon can be computed in
linear time. First, we need some observations.

The rays hitting a; separate the convex chains 7(v1,v;41) and m(vs, v;). This set of lines can
be described by subdividing the arc a; into sub arcs such that in each sub arc the tangents to the
convex chains are supported by the same element (vertex or arc) of the chains (see Figure 8.b).
In order to compute this subdivision, we only need to travel along the chains 7(w1,v;41) and
m(wa, v;). The complexity of this process is O(|fi(a;)| + |f2(a:)|, where fi(a;) and fa(a;) are the
funnels defined by m(w1,v;) and m(wy,vi11) and by m(wsq,v;) and w(ws, v;41) respectively. The
following lemma shows that this process has linear complexity:

Lemma 3 ([12]) Given the shortest path tree of a point p inside a splinegon P with n arcs, and
the funnels f(a;) defined as above, we have that Y ;_,|f(a;)] = O(n).

We observe that the lines hitting a; and emanating from a sub arc of a; correspond, in the
parametric space, to a curved quadrilateral. The arcs of the boundary of this quadrilateral are the
curves corresponding to the families of lines tangent to the same element of the convex chains and
the lines emanating from an end-point of the sub arc (see Figure 9). Computing the union of the
quadrilaterals defined by a; we obtain the face of the subdivision corresponding to the lines hitting
a; and we repeat the process for the rest of the arcs of the polygon.

From the previous lemma and these observations, we have that the subdivision can be computed
in O(n) time. Then, we have shown:

Theorem 4 The visibility diagram of an arc of a triangulated splinegon can be computed in linear
time.

5.3 Conic visibility

Let C' be a family of conics in the plane. We say that two points p and ¢ are C-visible inside a
rectilinear polygon P if there exists a conic ¢ € C' passing through both points and such that at
least one of the (possibly two) arcs joining p and ¢ is contained inside P. If C'is the set of circles,
we are dealing with circular visibility. If (' is other three-parametric family of conics, such us axis
parallel parabolas, axis parallel ellipsis with constant eccentricity or axis parallel hyperbolas with
constant eccentricity, we obtain some variations of conic visibility which, up to our knowledge,
were first introduced by Garcia [10]. The C-visibility polygon of p € P, denoted by Ve (p, P), is
the set of points of P which are C-visible from p.

12



The key idea is to use properties of conics in order to establish a one to one correspondence
between curves of the family C' passing through a fixed point and lines of the plane. More specifi-
cally, assume that p is the origin of the coordinate system and the conics axis are parallel to the
coordinate axis. For the circular visibility, the transformation

_ (&)
9) = @ o) = e

maps the circle 2% 4+ y? = 220z + 2byoy (centered at (zg, yo) and passing through the origin) to the
line 2zox 4+ 2yoy — 1 = 0. For the elliptic visibility, the transformation

(z,y)

x2 4 by? (b>0)

(2,y) — (z,y)" =

maps the ellipse 22 + by® = 2zox + 2byoy (centered at (zoyo) and passing through the origin) to
the line 2zqx + 2bygy — 1 = 0. For the hyperbolic visibility, the transformation

(@)
(z,y) — (2, )" = 21 by? (b<0)
maps the hyperbola z? + by? = 2xqx + 2byoy (centered at (xoyo) and passing through the origin)
to the line 2zgx + 2bygy — 1 = 0. Finally, for the parabolic visibility, the transformation

. (z,y)
=

(z,y) — (z,y)

maps the parabola y = ax? + bz (passing through the origin) to the line y = bx + a. These
transformations are involutive, i.e. ((z,¥)*)* = (#,y), and map conic rays passing through p to
rectilinear rays.

Let be P a rectilinear polygon, P his boundary and p an interior point of P. In the circular
and elliptic cases, P* is the exterior of the simple curve dP* and it is unbounded and connected.
For the hyperbolic and parabolic transformations the curve § P* is unbounded and not connected
because some points of 9P are mapped to co. In these cases P* is unbounded and not connected.

Let V(P*) be the region of P* linearly visible from co. By the properties of the transformations
Ve(p, P) = V(P*)* and then, the computation of the conic visibility region from a given point p
in a rectilinear polygon P is equivalent to the computation of the rectilinear visibility region from
oo in P*.

A polygon P divides the interior of CH(P) in a number of connected components: the polygon
P and the pockets of P. Each pocket has an edge that do not belong to P, which is called the lid
of the pocket.

For the circular and elliptic cases the points exterior to C'H(9P*) are visible from oo and the
points of each pocket are visible from oo if and only if they are visible from the lid of the pocket.
Thus, the steps for computing the C-visibility polygon of a point p inside a rectilinear polygon P,
denoted by Ve (p, P), are the following:

a) Compute P*.
b) Compute C'H(P*) (see [10, 20]).

c) Substitute the lids of the pockets of C'H (P*) for arcs of conics of the family C' passing through
p and not intersecting 9 P*.

d) Triangulate the pockets. To do this, we come back to the original polygon, triangulate it in
linear time using Chazelle’s algorithm [5] and return to the transformed plane.
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e) Compute the weak visibility polygons from the lids of the pockets and, using that, the set of
points outside P* that are visible from oo, denoted by V' (P*).

f) Compute Ve (p, P) = V(P*)*.

For the hyperbolic and parabolic cases, it is easy to see that we can add at most three arcs
of conics of C to each component of P* in order to close its boundary. In this way, we can get
a triangulation of P* coming back to the original plane and visibility from oo 1s reduced to weak
visibility from the added arcs.

There are applications where it is necessary to modify the conic visibility introduced here. For
example, if we want to compute parabolic visibility in order to study trajectories of objects under
the gravity, we have to restrict ourselves to parabolas y = az? + bz with a < 0 and, therefore, we
have to restrict linear visibility in the transformed plane to lines y = bx + a with a < 0. Figure 10
illustrates the application of the previous method to compute the parabolic visibility from a point,
with the cited restriction.

In order to solve the ray tracing problem from a fixed point in a rectilinear polygon P, we
compute the C-visibility diagram of the point, which is a subdivision of the biparametric space of
conics, such that each face of the subdivision corresponds to conic rays hitting the same arc of the
polygon P. We compute this diagram in an analogous way: steps a-e are the same and, after that,
we compute the visibility diagram for rectilinear rays emanating from oco. To do so, we compute
separately rays that hit an arc of C'H(P*), rays that hit a lid of a pocket and rays that do not
intersect OP*.

We summarize the results of this subsection in the following theorem:

Theorem 5 Let C be a family of axis parallel, constant eccentricity conics. The C'-visibility poly-
gon and the C'-wvisibility diagram of a point inside a simple polygon can be computed in linear
time.

6 Concluding remarks

In this paper we have presented optimal linear time algorithms for shortest paths and visibility
problems inside triangulated splinegons and for conic visibility inside rectilinear polygons. We
have shown that these two problems are equivalent if we restrict ourselves to axis parallel, constant
eccentricity conics passing through a fixed point.

We conclude with two open problems:

e The ray shooting problem in splinegons when rays can emanate from an arbitrary edge may
be solved using similar techniques.

e These techniques do not seem to be useful in the circular ray shooting problem when rays
can emanate from an arbitrary point so the general conic ray shooting problem needs some
different ideas.
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Figure 10: Downward parabolic visibility from p. In this case, dP* is not connected and P is
mapped to the regions of the transformed plane not containing the vertical axis passing through p
(figure (b)). In figure (c) two rays defining regions that are not visible from oo are shown. Finally,
figure (d) shows the parabolic rays defining the boundary of the downward parabolic visibility
polygon, which is the not-shaded part of P.
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