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Abstract

We prove that for every centrally symmetric convex polygon @, there exists a constant « such
that any locally finite ak-fold covering of the plane by translates of ) can be decomposed into k
coverings. This improves on a quadratic upper bound proved by Pach and Téth. The question is
motivated by a sensor network problem, in which a region has to be monitored by sensors with
limited battery life.

1 Introduction

A collection of subsets of the plane forms an f-fold covering if any point in the plane is covered by
at least f subsets. We consider the following problem (see Figure [I):

Given a convex planar body @, does there exist a function f(Q, k) such that any f(Q, k)-fold covering
of the plane by translates of () can be decomposed into k disjoint (1-fold) coverings?

This problem, first raised by Pach in 1980 (see [10] and references therein), is a classical
question in discrete geometry (see, e.g., [11,[9,/16]) and remains largely open. In fact it is not even
known whether there exists a constant ¢ such that any c-fold covering can be decomposed into two
coverings. A survey of the literature can be found in the book of Brass, Moser, and Pach [4]. Note
that there is no such function in general; for non-convex polygons this was first shown in [[12]], and
it was extended to a larger class of concave polygons by Palvolgyi [14].

In an unpublished manuscript, Mani and Pach [9] claim that 33-fold coverings by open unit
disks can be decomposed into two coveringsﬂ Tardos and Toth recently proved that any 43-fold
covering by translates of an open triangle can be decomposed into two coverings; the upper bound
on f(Q, k) for triangles is exponential [[16].

For the case of translates of an open centrally symmetric convex polygon, the problem proved
to be challenging. The existence of a function f(Q, k) was conjectured in 1980 [10], and a few
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Figure 1: A 3-fold covering of a rectangle by hexagons that can be decomposed into three coverings.

years later, resolved positively [11]] by Pach, showing that f(@Q, k) is at most exponential in k. Only
twenty years later was it shown that f(Q, k) is at most quadratic.

Theorem 1 (Pach and Téth [[13]). Given a centrally symmetric open convex polygon @, there exists a
constant a such that every agk?-fold covering of the plane by translates of () can be decomposed into
k coverings.

In addition to the above, a lower bound of |4k/3]—1 was also given in [13].

The main result in this paper is an improvement of the bound in Theorem from agk? to agk;
thus, the upper and lower bounds now asymptotically match.

Note that for translates of an arbitrary open convex polygon, Palvolgyi and Téth recently proved
that there exists a constant ¢ such that c-fold coverings can be decomposed into two coverings [15].
This leads to a high degree polynomial upper bound on the function f(Q, k) for translates of an
arbitrary open convex polygon.

As mentioned above, previous results hold for open bodies, and for arbitrary coverings. By
requiring that the covering is locally finite, the results hold for both open and closed bodies. This
observation was made in previous papers, and was first discussed in [[16]; the problem is still open
for unrestricted coverings by closed convex bodies.

In what follows, we require that the covering is locally finite, and we solve the problem for
translates of a centrally symmetric closed polygon. Our results do not rely on the closedness of
polygons (we can slightly perturb the input to avoid the open/closed issue), and therefore our
results apply, similar to most other results in the field, to unrestricted coverings by open centrally
symmetric polygons, and to locally finite coverings by either open or closed centrally symmetric
polygons.

Related Work. Coverings with other families of convex shapes have also been studied. For in-
stance, indecomposable multiple coverings of the plane by strips and concave quadrilaterals were
given by Pach, Tardos and Té6th [12], and for large classes of concave polygons by Palvolgyi [[14].
The problem for arbitrary (open) disks remains open, although a negative result for the dual prob-
lem was proved in [12]: for any k, there exists a point set such that for any 2-coloring of this set,
an open disk containing & points of the same color can be found. Set-theoretic investigations of
infinite-fold coverings can be found in [6].



Note that decompositions of coverings can be seen as colorings of geometric hypergraphs. In
these hypergraphs, vertices are the convex bodies in the covering, and every point in the plane
corresponds to a hyperedge, defined as the set of bodies containing that point. The assignment
of colors to the vertices of this graph, such that every hyperedge contains all £ colors, yields a
suitable decomposition. A recent study of such problems and of their dual, including colorings of
hypergraphs induced by halfspaces, halfplanes, disks, and pseudo-disks, is presented in [3]] E]

Similar definitions of proper colorings of geometric hypergraphs have been studied, such as
conflict-free colorings [[7]. Here the problem is to find a coloring such that every hyperedge contains
at least one vertex with a unique color. Variants of this notion have also been analyzed, e.g., k-
fault-tolerant conflict-free colorings where the conflict-free property must be true even if we were
to remove any k vertices in a hyperedge [1]. k-conflict-free colorings [2]] require k vertices with
unique colors in every hyperedge.

Applications to sensor networks. Consider a planar region monitored by sensors. Each sensor is
represented as a point, which is said to monitor every other point contained in a polygonal region
around it. Sensors can be on for a fixed amount of time, and can be switched on at any chosen
time. Such models of limited-battery sensors have been studied in other contexts [5]. Our results
imply that a region can be monitored for % units of time, provided that every point is covered by
at least ak sensors. This involves partitioning the set of sensors into k subsets, each covering the
region. Sensors in the j-th subset are switched on at time j.

Problem modification. We now slightly modify the statement of the problem. Let (), denote a
centrally symmetric polygon @ centered at point p. Notice that @), covers a point p’ if and only if
() contains p.

The problem involves a set of translates of () that covers every point of the plane at least agk
times. This is geometrically equivalent to a point set S such that any translate of () in the plane
contains at least agk points of S. Note, of course that S must be infinite, as must be a covering in
the original problem.

The decomposition of translates into k covers is equivalent to a coloring of S such that every
translate of @ in the plane will contain & colors. We strengthen the problem statement, by relaxing
the condition that every translate in the plane contains sufficiently many points. That is, we say
that if a translate contains enough points, it will contain % colors. This allows us to consider finite
point sets as well. We thus prove the following result.

Theorem 2. Given a centrally symmetric convex polygon @, there exists a constant « such that for
every (locally finite) planar point set S and every k € N, S can be k-colored so that any translate of @
containing at least agk points will also contain at least one point of each color.

After the initial submission of this manuscript, Gibson and Varadarajan [8] extended Theorem|2]
by showing that translates of an arbitrary convex polygon can be decomposed into a linear number
of coverings. Their methods rely heavily on the results presented in the following sections.

For simplicity of exposition, we assume that no two points in S have the same slope as an edge
of ). This assumption can be removed by applying an infinitesimal perturbation to the points. Also,
we assume S is locally finite; every compact region contains a finite number of points.

*Using the notation of [3], the main result of this paper is that p5(k) = O(k).
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Overview. We start by giving a sketch of the complete proof before going into details. The original
problem is transformed as follows.

The problem of coloring a (possibly infinite) point set with respect to translates of a polygon
(the strengthened statement presented in Theorem [2) is shown to be equivalent to coloring a finite
point set with respect to a finite set of wedges determined by @ (see Section [2)). In other words,
the problem is now to k-color a set of points such that every wedge containing a sufficient number
of points m will also contain k colors. Our goal is to show that m = O(k).

We will restrict to color points inside certain witness wedges, which have the property that any
wedge containing at least m points will contain a witness. Witnesses will contain at least » points.
This is why we will define the level curve which bounds the union of such minimal wedges for a
fixed pair of bounding directions (see Section.

If the level curves did not intersect, coloring the points would be straightforward. It is the in-
tersections of these curves that make the problem non-trivial, and forbids us to restrict to witnesses
on level curves only. Since k is small with respect to the point set, intuitively one can imagine that
level curves tend not to venture too “deep” into a point set. In other words, a typical wedge will
not reach far into the set before collecting r points. In Section [3|we define a polygonal region that
is deep enough so that the complexity of level curve intersections within the region is manageable.
Our construction of this region will be such that we will be able to restrict to considering witness
wedges within.

To reduce our problem to circular arc coloring, in Section [4we define a parameterization which
maps the set of witness wedges to the boundary of a circle. This is directly tied to a mapping of
points in S to circular arcs, i.e., intervals on the boundary of the circle (Section [5)). Our mapping
is such that a position x on the circle will belong to an interval corresponding to point p € S if
and only if the witness wedge represented by z contains p. As every witness wedge contains at
least r points, every position on the circle belongs to at least r intervals. The key property of the
parameterization is that every point in .S is mapped to at most two intervals.

Thus, the problem is reduced to k-coloring arcs on an ©(k)-covered circle (with certain geomet-
ric constraints for the arcs), so that every position on the circle is covered by at least one interval
of each color. In Section [6| we give an algorithm for this circular arc coloring problem.

Note that the reductions and the transformations of the problem are constructive; thus our
algorithm to color circular arcs yields a simple polynomial algorithm for the original problem.

2 Reduction to Wedges

Let @ be a closed, convex, centrally symmetric 2n-gon, with vertices qo, q1, . . ., g2,—1 in counter-
clockwise order. Throughout the paper, indices are taken modulo 2n. The set of indices between
and j in counterclockwise order is denoted by [i, j].

We first reduce the problem to coloring a finite set of points with respect to wedges instead of
coloring a possibly infinite set with respect to polygons. This idea is also used in [13} [16].

We consider a tiling of the plane, with squares of side d, where ¢ is half of the smallest distance
between non-consecutive edges of (). Let Q' be a translate of ). By construction, any intersection
of ' with a square is the intersection of a square with a wedge with boundary directions parallel to
two consecutive edges of Q (see Figure [2). A wedge bounded by rays parallel to ¢;¢;—1 and ¢;gi+1
will be called type i, or alternatively an i-wedge. The closed i-wedge with apex x is denoted by
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Figure 2: Reduction of the problem with centrally symmetric polygons to wedges in a square.

The number of squares that @' intersects is bounded by a constant ¢ that only depends on
Q. Therefore if ()’ contains at least agk points, by the pigeonhole principle @)’ contains at least
agk/cg points within one of the squares.

We will restrict to considering a single square and the 2n wedges defined by ). Hence the
problem reduces to coloring (independently) the finite bounded point set S in each square, i.e., we
will seek a k-coloring of each square such that any i-wedge containing at least agk/cg points will
contain all k£ colors.

We now define the notion of level curves for wedges. This notion extends the definition of
boundary points in [13] and [[11], which are the points found on the first level. We associate a
curve with each i-wedge. Let YW/ be the set of apices of all i-wedges containing r points. Formally,

WI = Cl ({x eR?:|Wi(z)N S| = 7"}) ,

where CI(-) is the closure operator. We define C;(r) as the boundary of WZ" := Ujsr W/, Ac-
cordingly, the closed region that includes the complement of Wfr will be denoted W;" (i.e. the
intersection of the two regions is C;(r)).

Note that C;(r) is a monotone staircase polygonal path, with edge directions parallel to those of
its corresponding i-wedge. Since S is in general position, for any x € C;(r) that is not a vertex of
Ci(r), Wi(x) contains exactly r points. More precisely, we have the following.

Observation 1. For all x € C;(r), W;(z) contains either r or r+1 points of S.
The curves C;(3) for a square are illustrated in Figure 3| A key property of C; is the following.

Observation 2. Any i-wedge containing at least r points of S contains an i-wedge whose apex belongs
to CZ(T)

We conclude that it is sufficient to color points in the union of all W=" (in other words, in the
union of regions to the “left” of each C;(r)). Handling the complexity of the intersections of these
curves is the next problem that we deal with.
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Figure 3: The curves of C;(3), when @ is an axis-parallel square.

3 Restriction to High-Depth Region

We will show that in order to determine the witness wedges that we must color, it is not necessary
to consider complete level curves. At the expense of a constant factor to f(Q, k), we restrict to the
portion of the level curves inside a polygon 7. Inside this polygon, only few intersections between
level curves can occur, which simplifies the coloring task.

Let ¢; be the oriented line with direction ¢;¢;+1 going through a point of S and such that the
closed halfplane to its left contains exactly 2r+3 points. Let L; be the closed halfplane to the right
of /;. Denote by 7 the intersection of the 2n halfplanes defined by Q:

2n—1

1=0

We assume 7 # (): this will be shown true later for the values of r that we will use (by the well-
known center point theorem, it is true as long as 2r+3 < |S|/3). Note that not all lines ¢; appear
on the boundary of 7 (see Figure |4(a)).

Lemma 1. For all i € [0,2n—1] there is a vertex v; of T such that v; € W;(z) forall z € 7.

Proof. Let ¢; be the oriented line parallel to ¢; that is tangent to 7 and such that 7 is contained in
the closed halfplane to the right of ¢;. Then for

vi =0 Ny,

the wedge W, (v;) contains 7. Therefore, v; € W;(x) for all x € 7. Note that a vertex of 7 may
have multiple labels v; (see Figure [4(a)). O

Lemma 2. Let x be a point contained in two wedges W;(y) and W;(z) that contain at most r and r’
points of S respectively, with 0 < (j—i) < n. Then for all i’ € [i, j—1], the oriented line with direction
qirqir+1 through x has at most r+r' points of S strictly to its left.
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Proof. It suffices to observe that the halfplane to the left of the line is contained in the union of
wedges W;(z) and W;(x). (See Figure ) ]
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(a) Definition of the points v;. (b) Two wedges containing
the same point x.

Figure 4: Construction of 7, and illustration of Lemma [2]

We now show that if two level curves have an intersection in 7, then they must have antipodal
indices, that is, ¢ and i+n. We actually prove the stronger statement that the regions W;~" do not
have any intersection in 7, unless they have antipodal indices.

Lemma 3. If j # i and j # i+n, then W' N W="NT = (.

Proof. Assume by symmetry that 0 < (j—¢) < n and suppose the two regions intersect at point
x € T. Consider the two wedges W;(z) and W;(z). Since = is contained in W;=" N W3, they both
contain at most 41 points. By Lemma for all i’ € [i, j—1], the oriented line with direction ¢;/g;/ 11
through = has at most 2r+2 points of S strictly to its left. This contradicts the fact that x € 7. [

We proceed to show that in fact only one pair of level curves can intersect inside 7 (a related
statement was proved by Pach [11]). This is illustrated in Figure

"

(a) A case where the regions W;=" N T (in dark) (b) Regions W;" and Wﬁ:n may intersect in 7.
do not intersect.

Figure 5: Illustration of Lemmas [3] and 4

Lemma 4. At most one pair of regions {W,~", W5 } intersect in T.



Proof. By contradiction, suppose that y € W "NW;3,NT and z € W' WY, NT, with j # 4, i+n.

First, let us suppose that z € W;(y) U Wiy, (y), and focus on the case z € W;(y). Trivially,
z € Wj(z). Thus Lemma [2| implies that for all i’ € [i, j—1], the oriented line with direction g¢;/g;'+1
through =z has at most 2r+2 points of S strictly to its left, contradicting z € 7. The case z € W; 1, (y)
works analogously.

On the other hand, if z ¢ W;(y)UW;4.,(y), then we claim that y € W;(2)UW,1,(z) and a similar
argument leads to a contradiction. In order to prove the claim, consider the rays from y parallel
to ¢sqs+1 for s € [0,2n — 1]. Then, z ¢ W;(y) U W;1,(y) implies that y lies (counterclockwise)
between either the pair of rays parallel to ¢;_1¢; and to ¢;q;+1, or the pair parallel to ¢;1,—1¢;+, and
t0 ¢i+nitn+1. Given j € [i+1,i+n—1], we have y € W;,,(2) in the first case, and y € W;(z) in the
second case (see Figure @ O

Figure 6: Proof of Lemma

Lemma 5. If C;(r) intersects the interior of 7, then it intersects the boundary of 7 at exactly two
distinct lines.

We denote the lines by ¢,, and ¢, so that ¢,,, v; and /;, appear in counterclockwise order on
the boundary of 7, as shown in Figure

Ui_—‘,—n

Figure 7: Proof of Lemma



Proof. Take any point = on C;(r) N 7. We have v; € W;(z) and v;4,, € W;1,(z), and each of the
common supporting lines of those two wedges properly intersects C;(r) only once. These supporting
lines decompose the plane into four wedges: W;(x) and W;,(z), and two additional wedges, each
of which contains at least one intersection of C;(r) with the boundary of 7 (see the shaded area
in Figure . This implies that we can find two lines ¢,, and ¢}, such that a; € [i—n,i—1] and
b; € [i,i+n—1], each of which contains at least one intersection of C;(r) with the boundary of 7.
Since this reasoning is valid for all = € C;(r), there are at most two intersections. O

Lemma [5|implies that every C;(r) intersecting 7 is such that i € [a;+1, b;]. Let C/(r) be the portion
of C;(r) contained in 7:
Citr) ==Ci(r)NT.

Lemma 6. (i) The curve C(r) is connected. (ii) If a; # i—1, then Cj(r) is empty for j € [a;+1,i—1].
(iid) If b; # i, then Ci(r) is empty for j € [i+1,b;].

Proof. Statement (i) follows directly from the fact that C;(r) is an unbounded curve and intersects
7T at most twice (Lemma/5)). Statements (ii) and (iii) follow from Lemma [5|and Lemma O

Observation 3. If C.(r) is empty, then any i-wedge W;(x) for x € T contains at least r points of S. In
particular, W;(v;) C Wj(x) and |W;(v;)) N S| > r.

The combinatorial properties described in this section lay the foundations for the definition of
a set of witness wedges in Section

4 Witness Wedges

We now describe a set of wedges, parameterized by a real number ¢ € [0,2n) with apex at point
x(t) and type(t) = |t|. We abbreviate Wy, (z(t)) = W(t). This set of wedges is such that any
i-wedge containing at least 4r+5 points contains a witness wedge W (t). Thus it suffices to color
points with respect to those witness wedges.

The wedge W (¢) will have its apex on C.(r) for ¢ € [i,i+1) if C/(r) is not empty. More precisely,
we let o(t), t € [i,i+1) be a parameterization of C.(r), where o;(i) := ¢,, N C/(r) and o;(t) =
b, NC(r) for t € [i+0.9,i+1). If C(r) is empty, then we distinguish three cases (see Figure|[8):

A. If there is a j such that i € [a;+1,j—1] then oy(t) := C}(r) N ¢y, for t € [i,i+1).
B. If there is a j such that i € [j+1, b;] then 0;(t) := C}(r) N 4y, for t € [i,i+1).
C. Otherwise, o;(t) := v; for t € [i,i+1).

We define z(t) as the concatenation of the functions o;(¢):

.CC(t) =0 (t)

Lemma 7. For any wedge W;(y) that contains at least 4r+5 points of S, there is a value t € [i,i+1)
such that W (t) C W;(y) and W (t) contains at least r points.



v; = o0y(t)

Figure 8: Definition of o;(¢), when C.(r) is empty.
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Figure 9: Illustration of the proof of Lemma

Proof. Since W;(y) contains at least 4r+5 points, it intersects 7: by contradiction, if it does not
intersect 7, it is completely contained in the union of the two halfplanes adjacent to 7 at v; (see
Figure [9). But as each of these halfplanes contains exactly 2r+2 points (by definition of 7), their
union can contain at most 4r+4 points, and we get the desired contradiction.

Because of that intersection, W;(y) contains a wedge W;(z) such that z € 7.

First suppose that C;(r) is not empty. Then C.(r) N W;(y) # 0, otherwise W;(y) cannot contain
enough points. If z(t) € C/(r) N W;(y), then W (¢t) is contained in W;(y) and contains at least r
points.

Now suppose C.(r) is empty and refer to cases A, B and C in the preceding. In case A, note
that wedges W (i) and W (j) have the same apex Cj(r) N £,;, W (j) contains at most 7+1 points,
{4, has 2r+3 points on its left, and W (i) is in the union of W (j) and the halfplane left of /,, (see
Figure[10). This implies that both W () and the halfplane to the left of the oriented line of direction
¢iqi+1 through its apex have at most 3r+4 points. Thus W;(y) has its apex outside both W(j) and
the halfplane, which implies W (i) C W;(y). Because C/(r) is empty, |WW (i) N S| > r. Case B is
identical.

In case C, from Observation [3) W;(v;) C W;(z) and W;(v;) contains at least r points. Since in
that case z(t) = v; for ¢ € [i,i+1), any value of ¢ in [i,i+1) will work. O

It is natural to view the range [0, 2n) as a counterclockwise parameterization of the points on a
unit circle. Thus in what follows, the real parameter ¢ will be viewed modulo 2n, and an interval
[t,t'] is the set of points on the circle on a counterclockwise walk from ¢ to ¢'.

10



Figure 10: Case A in the proof of Lemma [7}

5 Reduction to Intervals

Our goal is to color the points of S with k colors such that any witness wedge W (¢) contains at
least one point of each color. For each point p in S, we consider the set I(p) of witness wedges
containing p:

I(p) :={t€]0,2n):pec W(t)}.

Intuitively, the following lemma states that if a point p is contained in the wedges for two
different values ¢ and ¢’ of the parameterization, then p is contained in every wedge W (¢”) of the
parameterization with ¢,t”, and ¢’ appearing consecutively in an interval of length less than n—1.

Lemma 8. For any point p € S, if p € W(t) N W(t'), where t' ¢ [[t],t] and type(t') €
[type(t), type(t)+n—1], then p € W (t") for all t" € [t,t'].

Proof. There are two cases to consider, depending on type(t) and type(t'):
o type(t) = type(t'), or
o type(t') € [type(t)+1, type(t)+n—1]

In the first case, either W (t) = W (t'), or z(¢") lies on C.(r) between x(¢) and z(t'), by definition
of the parameterization. Since C.(r) is monotone in all directions between ¢;¢;—1 and ¢;¢; 11, the
wedge W (¢”) contains the intersection of W (¢t) and W (t'), and therefore W (¢") contains p.

In the second case, without loss of generality, we can assume that type(t”) # type(t) and
type(t") # type(t’), for otherwise the arguments of the first case apply.

By Lemmal(3] p ¢ 7. Otherwise, it would mean that two wedges W (¢) and W (¢) intersect inside
T, with type(t') # type(t) + n. Also, because z(¢) and z(¢') are in 7 and by the same lemma and
reasoning, we know z(t) ¢ W (¢') and z(t') ¢ W (t).

Thus we have the situation depicted in Figure By definition of the parameterization, two
wedges W (t) and W (¢'), with ¢’ € [t,t + n — 1] are such that the counterclockwise bounding ray u
of W (¢) intersects the clockwise bounding ray «’ of W ('), and the two other rays do not intersect.
The point p is in the closed wedge V right of v and left of «'.

Then for any point ¢ in the closed wedge V' opposite to V, the wedges W;(g) contain V for
J € [type(t), type(t')]: indeed, by definition of the wedges, the absolute angle of the clockwise

11
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Vtype(t)

Utype(t')

Figure 11: Second case of Lemma 8] Intersections of the wedges W (¢), W (") and W (¢').

ray of W;(q) is between that of W (¢) and of W (¢'), and symmetrically the absolute angle of the
counterclockwise ray of W;(q) is between that of W (¢t) and of W (t').

To conclude the proof, we will now show that every z(¢”) of the parameterization is inside
V’. Remember that, by Lemma (1, W (¢") contains v, and by definition, the vertices vy ),
Vgype(rr) a0d Vyype 11y appear in non-strictly sequential counterclockwise order on the boundary of 7.
As W(t), W(t") and W (t') cannot intersect strictly inside 7, and that the ray from z(t") to vyype(sr)
is contained in W (¢"), either z(¢") € V', or z(¢") is on the boundary of 7. But in that latter case,
x(t") must appear to the left of or on u and to the right of or on «’ (according to case A, B, or C of
the definition of the parameterization), therefore it must also be in V. O

As a consequence, a point corresponds to either an interval of values of the parameterization,
or a pair of intervals, the corresponding wedges of which are of two types i and i+n.

Corollary 1. I(p) is either an interval, or a pair of intervals I;(p), Is(p), such that type(t) = i for
t € I1(p) and type(t) = i+n for t € Iy(p), where i is such that W;=" and W', intersect in T.

Proof. From Lemma|8), I(p) cannot consist of more than two intervals, since otherwise we can find
two points ¢ and ¢’ satisfying the conditions of Lemma [8]in two distinct intervals.

Now first suppose that no pair {W,~", W' } intersects in 7. Then again the statement is a
direct consequence of Lemma Otherwise suppose that p € W="NWy . Then we must show that
Ii(p) C [i,i+1) and Iz(p) C [i+n,i+n+1). For contradiction, let i+1 be contained strictly in the
interior of I;(p). Then there are again two points ¢t € I;(p)N[i+1,i+2) and ¢’ € Iz(p)N[i+n,i+n+1)
satisfying the conditions of Lemma 8} a contradiction. O
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6 Coloring

We give an algorithm for coloring the points with & colors so that all wedges {W(¢t) : ¢t € [0,2n)}
contain all k£ colors. In the following, we say that a point p € S covers a point ¢ € [0, 2n) whenever
t € I(p). We proceed by iteratively removing a covering of [0,2n), that is, a subset of S, the
elements of which collectively cover the circle [0,2n). We use a greedy algorithm to select such a
subset; we iteratively expand the cover for [0,¢), by selecting a new point that covers the largest
interval starting from ¢. Every point in a cover is assigned the same color. By repeating this & times,
we ensure that all & colors are represented in each of the wedges W (¢), and thus by Lemma|7, in all
wedges containing at least 4r+5 points. The key property of the algorithm is that it only requires
r=0(k).

A formal description of the algorithm follows. We suppose, without loss of generality, that only
the pair {W;", W"} may intersect in 7.

Coloring Algorithm

fori « 1 to k do:
1. 20,5 «0
2. while J,cg I(p) # [0,2n) do:

(a) find p € S such that y(p) := maxycg 2p){t—2 : [7,1] C I(p)} is maximized
(b) S~ S"U{p}
(©) = — x+y(p)

3. assign color i to all points in S’
4. S8\
When every set I(p) is a simple interval, this algorithm greedily colors circular arcs. The fol-

lowing lemma states that in that case, no point on a circle is covered more than a constant number
of times per iteration (see Figure(12).

Figure 12: Covering the circle [0, 2n) by circular arcs.
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Lemma 9. Suppose that no pair {W;",W;J" } intersects in T, and that there are enough points to
perform j iterations of the coloring algorithm. Let V be the set of points colored by the algorithm after

the iteration j. Then every point of [0, 2n) is covered at most 3;j times by points of V.

Proof. 1t is sufficient to prove that no point of [0,2n) is covered more than three times by points
of S’. Note that if no pair of curves intersect, then from Corollary [1} every set I(p) is an interval.
Hence S’ is a greedy covering of the circle by intervals (i.e., circular arcs).

Let I(p) be the last interval chosen by the algorithm, and consider S” := S’—{p}. Suppose that
a point ¢ is covered by more than two points of S”. Let a and b be the first and the last points
chosen, respectively, that cover ¢t. The remaining intervals that cover ¢ either extend further than
I(b) and should have been chosen instead of 1(b), or do not extend further than 7(b), in which case
I(b) should have been chosen instead. In both cases, we have a contradiction. Hence the points of
S” do not cover any point of [0, 2n) more than twice. The last interval I(p) can cover some points
of the circle a third time. Therefore, every point of [0, 2n) is covered at most three times by points
of §'. O

From Corollary[I] a point p might correspond to two intervals on opposite regions of the circle
[0,2n). We show that the following similar property holds.

Lemma 10. Suppose that there are enough points to perform j iterations of the above algorithm, and
let V' be the set of points colored by the algorithm after the iteration j. Then every point of [0,2n) is
covered at most 6 times by points of V.

Proof. We consider that W;" and W;" intersect in 7. Otherwise, the statement is implied by
Lemma [9] By Lemma [4] only one such pair can intersect. Without loss of generality, we also
assume that C; and C,, are both orthogonal staircases going from top left to bottom right. This
setting can always be enforced by symmetry and affine transformation of the points. We assume
that C{, is, at some point, above C;,, which might cause a point between the two curves to generate
one interval on each (see Figure [13(a)).

We will prove our statement by induction on the number of iterations. Let us show that after
the iteration (j+1), no point of [0, 2n) is covered more than 6(j+1) times. The induction hypothesis
is that this is true for the iterations O to j, where iteration 0 corresponds to the initial situation. The
base case j = 0 is trivial.

Consider a point ¢ € [n,n+1), and the corresponding point z(¢) on C,,. Suppose that this point
was covered 7 times in the previous iterations (thus by points of colors 1 to j). By the induction
hypothesis, 7 < 6. We consider the set of points S’ selected by the algorithm at the iteration (j+1).
The sets I(p) start by covering the wedges of type 0, corresponding to points on C;,. Let p be the
first point of ', in order of selection, that also covers ¢. By Corollary[1} p only covers two types of
wedges, 0 and n. Let ¢ be the horizontal projection of p on C{.

Let p’ be the next point selected by the greedy algorithm. If it covers the point 1, then from
Corollary|[1] it cannot cover any point on C,,. Otherwise, since the algorithm is greedy, the point is
associated with an interval that intersects /(p) and that has the farthest right endpoint. Geometri-
cally, p’ is the lowest point to the left of the vertical line ¢ through ¢. Let z be the projection of z(¢)
onto /.

Two cases can occur. First, if p’ is below z(t), then ¢ is covered at most once, by p. On the other
hand, if p’ is above z(t), then p’ covers t.
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By the induction hypothesis, W (g) contains at most 6; colored points. By Observation |1| and
since ¢ € C{;, Wy(q) contains at least r points. Hence Wy (q) contains at least r—6; uncolored points
(including p and p’). Also, since the algorithm is greedy, Wy (p) and Wy (z) do not contain uncolored
points, otherwise they would have been selected by the algorithm. Hence the orthogonal rectangle
R with opposite vertices p and z contains at least r—6; uncolored points (see Figure [13(b)).

(a) The point p is associated with two intervals (b) The rectangle R.
L (p) C [07 1): and IQ(p) Cc [n7 n+1)

Figure 13: Illustration of the proof of Lemma

Since t is covered 7 times and x(t) € C,,, W,,(x(t)) can contain at most r+1—7 uncolored points.
The rectangle R is included in W,,(z(t)), thus from the previous observation on R, there are at most
(r+1—7)—(r—67) = 6;j+1—7 uncolored points that are both to the right of ¢ and above x(¢). These,
together with p and p/, are the only points that may cover ¢ after we have covered the interval [0, 1).
Hence after we have covered the interval [0, 1), the points in [n, n+1) cannot be covered more than
74(6j+1—7)+2 = 6;5+3 times. On the other hand, the points in [0, 1) cannot be covered more than
6743 times.

A similar reasoning holds when the algorithm starts to cover points in the interval [n,n+1).
We have to replace 65 by 6;5+3, since the points on both sides can already be covered 6;+3 times.
Thus after the (j+1)th iteration, no point is covered more than 6;j+3+3 = 6(j+1) times, which
concludes the proof. O

Corollary 2. For r > 6k, the coloring algorithm finds a k-coloring of the points in S such that all
wedges W (t) for t € [0,2n) contain all k colors.

Note that with this choice of r, by the well-known center point theorem, 7 is never empty. By
Lemma (7, this concludes the proof of Theorem |2, with agk > ¢g x (4 x 6k+5), hence for any
ag > 29cq. By duality, as the polygon @ is symmetric, this implies the following.

Theorem 3. Given a closed centrally symmetric convex polygon @, there exists a constant « such
that every locally finite agk-fold covering of the plane by translates of ) can be decomposed into k
coverings.
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