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Abstract

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with
vertex set P and an edge exists between two points p, q ∈ P when there is a circle
through p and q with at most k other points of P in its interior. We provide upper and
lower bounds on the number of edges in an order-k Delaunay graph. We study the
combinatorial structure of the set of triangulations that can be constructed with edges
of this graph. Furthermore, we show that the order-k Delaunay graph is connected
under the flip operation when k ≤ 1 but not necessarily connected for other values
of k. If P is in convex position then the order-k Delaunay graph is connected for all
k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay
graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used
to efficiently solve a coloring problem with applications to frequency assignments in
cellular networks.

1 Introduction and preliminary definitions

Let P be a set of n points in the plane in general position (i.e., no three points are
collinear). A geometric graph is a graph whose vertex set is P and whose edge set is a set
of segments joining pairs of vertices. The order-k Delaunay graph of P , hereafter denoted
as k-DG(P ), is the geometric graph formed by the edges of P with order at most k. For
two points p, q ∈ P , we say that the edge pq has order k, and write o(pq) = k, provided
that every circle with p and q on its boundary contains at least k points of P in its interior
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and at least one of these circles contains exactly k points in its interior. For an edge pq
of order k, a circle with p and q on its boundary containing exactly k points is called a
witness circle. When k = 0, we obtain a relevant and ubiquitous structure, the Delaunay
graph [6, 3, 13]. It is well known that this graph is a triangulation –usually denoted by
DT (P )– when the points are in general position. In the remainder of the paper, all graphs
are constructed on an arbitrary yet fixed point set P in general position. Therefore, we
will write k-DG to mean k-DG(P ), unless otherwise indicated. We include some comments
in the concluding section on the case in which P contains degeneracies.

In this paper, we concentrate mainly on the graph theoretic properties of the order-k
Delaunay graph as well as some applications arising from these properties. In particular,
in Section 5, we show how the order-k Delaunay graph can be used to efficiently solve a
coloring problem that can be applied to frequency assignments in cellular networks. The
motivation for our study comes from three main directions –related to each other– that
we describe next.

Voronoi Diagram and Delaunay Graph. The Voronoi diagram of a point set in
the plane and its dual, the Delaunay graph, constitute one of the pillars of Computational
Geometry theory and the main tool in the applications of the discipline. Surveys are given
in [3, 13] and an encyclopedic treatment of these structures can be found in the book by
Okabe et al. [26].

The order-k Voronoi diagram is a generalization that consists of the decomposition of
the plane into regions that have the same set of k closest neighbors. The higher order
Voronoi diagrams are related to the k-DG graphs. We outline the precise relation be-
tween these two structures in Section 3. Although from their earliest development these
structures were used for several optimization purposes, it took some time to realize that
their combinatorial properties should also be well understood. In particular, it was thought
that Delaunay triangulations are Hamiltonian, but this was disproved by Dillencourt in [7].
However, he was able to prove in a subsequent work that DT (P ) is a 1-tough graph which
implies that for even |P | the graph DT (P ) contains a perfect matching [8]. A natural
extension to this approach is to study whether higher order Delaunay graphs are Hamil-
tonian. In fact, Chang and Yang proved that this is always the case for 20-DG [5], but to
the best of our knowledge, no better bounds have been obtained since then. One of the
contributions presented here in Section 2 is that the order-k Gabriel graph, a subgraph of
the order-k Delaunay graph, always contains a Hamiltonian cycle for k ≥ 15. The proof
of this result is rather technical and it remains elusive whether it holds for a much smaller
k, as in fact we believe.

Proximity Graphs. A proximity graph is a graph that represents the structure in a point
set by joining pairs of points in the plane that satisfy some type of proximity measure. It
is the measure that determines the type of graph that results. Many different measures
of proximity have been defined and the resulting graphs have been studied both from
a combinatorial and computational perspective [19]. For most of these graphs, an edge
exists between a pair of points when some proximity region defined by this pair of points
is empty. Proximity graphs find applications in many areas such as Pattern Recognition,
Data Structures, Computational Geometry and Motion Planning, and there has been a
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recent flow of papers on their application to data depth analysis [1, 18, 27].
Among proximity graphs, the Delaunay graph/triangulation of a planar point set P is

an especially relevant structure. Its edges have a simple geometric definition in terms of
proximity measure. Two points p, q ∈ P form a Delaunay edge provided that there exists
a circle with p and q on its boundary with no points of P in its interior. Closely related
to this is the Gabriel graph and the Relative Neighborhood graph. In the Gabriel graph,
two points p, q ∈ P form an edge when the circle with the segment pq as diameter has
no points of P in its interior. An edge exists between two points p, q ∈ P in the Relative
Neighborhood graph if no z ∈ P satisfies max{d(p, z), d(q, z)} < d(p, q). The containment
relation between the proximity relations defining the Relative Neighborhood graph, the
Gabriel graph and the Delaunay triangulation imply a containment relation between the
graphs [26].

These proximity measures can be generalized in a natural way by relaxing the condition
that the proximity regions need to be empty. The kth order Delaunay graph we are
considering here is an example, in which two points p, q ∈ P form an edge provided
that there exists a circle with p and q on its boundary with at most k points of the set
P inside the circle. Note again that the order-0 Delaunay graph is the standard one.
This relaxation naturally leads to the definition of the order-k Gabriel graph, the order-k
Relative Neighborhood graph and others.

These higher-order graphs have also been studied in the literature but not as exten-
sively as their order-0 counterparts. In [30], properties of the order-k Gabriel Graph are
investigated and an algorithm for its construction is proposed, while in [5] it is shown that
the order-20 Relative Neighborhood graph is Hamiltonian. The size of these graphs is
also a basic parameter that has attracted significant attention. In particular, it has been
proved that the size of the kth order Relative Neighborhood graph is linear in kn [31] and
that the size of the Sphere of Influence graph1 is at most 15n [29].

For higher order Voronoi diagrams, the combinatorial complexity of these structures is
related to the complexity of levels in arrangements of hyperplanes [2, 16]. These problems
have a rich history, related to halving lines/hyperplanes (or more generally k-sets), and
have been studied since the seminal works by Lovász, Erdős, and others. In Section 3, we
provide upper and lower bounds on the number of edges in an order-k Delaunay graph,
which is related to these topics.

Triangulations. While the Delaunay triangulation optimizes several quality criteria
among the triangulations of a point set, in some situations it may be preferrable to have
some flexibility for modifying the structure to some extent, for example in the case of
terrains, where points have elevations. Gudmundsson et al.[14] define the Delaunay or-
der of a triangulation T as the maximum of the orders of the triangles in T , where the
order of a triangle is defined as the number of points contained inside its circumscrib-
ing circle. They study the use of higher order Delaunay triangulations for optimization
purposes. Variations for constrained triangulations, terrains and polygons have been con-

1The Open Sphere of Influence Graph is defined by considering a disk around each point with radius
equal to the distance to that point’s closest neighbour, and linking any two points with an edge if their
disks intersect.
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sidered in [15, 20, 28, 21]. In [14] Gudmundsson et al. also consider order-k Delaunay
edges and study the problem of computing the set of order-k Delaunay edges which can
be completed to a triangulation such that all the triangles have order at most k; however,
order-k Delaunay graphs are not explicitly considered.

A complementary approach consists of considering the set of all triangulations whose
edges are constrained to have order at most k and use the diagonal flip operation that since
its introduction by Lawson has been used as a heuristic for several quality criteria [22, 4].
This raises the issue of the connectivity of the corresponding flip graph, and that is why
in Section 4, we study the combinatorial structure of the set of triangulations that can be
constructed with edges from k-DG and show that it is connected under the flip operation
if k ≤ 1 but not in general for other values, unless P is in convex position.

2 Order 15 Gabriel graph is Hamiltonian

In this section, we show that for all k ≥ 15, the order-k Gabriel graph contains a Hamil-
tonian cycle. This shows that 15-DG is Hamiltonian, because it is known that the order k
Gabriel graph (denoted k-GG) is a subgraph of the order k Delaunay graph. Although this
result improves on the best previous result by Chang et al. [5], who showed that 20-DG is
Hamiltonian, we think that it is still far from optimal, as we even conjecture that 1-DG
is Hamiltonian.

The approach we take to prove this is the following. We first define a total order on
all the Hamiltonian cycles through a given point set. We then show that the minimum
element in this total order is a Hamiltonian cycle where every edge is contained in 15-GG.
Before proving this theorem, we first need a useful geometric lemma about cones.
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Figure 1: Illustration for Lemma 1
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Lemma 1. Let 0 < θ ≤ π/5. Let C(A, θ, L, R) be a cone with apex A, bounding rays L
and R emanating from A and angle θ computed clockwise from L to R. Given two points
x, y ∈ C(A, θ, L,R) both of whose distance to A is greater than 2k, for some constant
k > 0, then either d(x, y) < 2k or d(x, y) < max{d(x,A)− k, d(y,A)− k}.
Proof. First, consider the case where θ = π/5. See Figure 1 for an illustration of cone
C(A, θ, L,R). Let e be the point on R at distance k from A. The points c and d are on L
and R respectively such that |Ac| = |Ad| and |cd| = 2k. The points a and b are on L and
R, respectively, both at distance 2k from A. Since θ = π/5 and triangles 4(a, c, d) and
4(A, c, d) are similar and isosceles, we have that |ad| = 2k and d(A, d) = k/ sin(π/10) >
3.2k.

Given two points x, y ∈ C(A, θ, L,R) we need to show that d(x, y) has one of the two
properties in the statement of the lemma. Without loss of generality, assume that x is
further from A than y and that y is to the left of x (i.e., y is to the left of the line through
A and x oriented from A to x). All other situations are symmetric.

If x is in the interior of the cone, rotate the cone counter-clockwise around A until x
lies on R. Since y is to the left of x, the point y is still in the interior of the cone.

Since we assume that 2k < d(x,A), we have only two cases to consider: when 2k <
d(x,A) ≤ k/ sin(π/10) and d(x,A) > k/ sin(π/10). In what follows, we use the notation
D(z, r) to represent a disk centered at point z with radius r.

Case 1: (2k < d(x,A) ≤ k/ sin(π/10)) If 2k < d(x,A) ≤ k/ sin(π/10), then both x
and y are in the region defined by C(A, θ, L,R) ∩ D(A, k/ sin(π/10)) ∩ D(A, 2k), where
D(A, 2k) is the complement of the disk centered at A with radius 2k. Since we noted
above that the diameter of this region is 2k, we have that d(x, y) ≤ 2k. Now, the only
time d(x, y) = 2k is when x is on d and point y is either on a or c. However, when x = d,
we have that d(x,A)− k > d(x, y). Therefore, the conditions of the lemma have been met
in this case.

Case 2: (d(x,A) > k/ sin(π/10)). When d(x,A) > k/ sin(π/10) then by construction
the furthest point from x is a, so we can assume that y is a. We need to show that d(x, a) <
d(x,A) − k. This is equivalent to showing that d(x, a) < d(x, e). Let g = R ∩D(x, |ax|).
Consider the isosceles triangle 4(g, a, x). Since ∠(a, x, e) < ∠(a, d, e), the point g must
be on the interior of the segment eb. Therefore, d(x, a) < d(x,A)− d(a, e) as required.

We have shown that the lemma holds for cones where θ = π/5. Notice that the lemma
trivially holds for cones whose angle is smaller since a cone of angle π/5 contains the cone
with smaller angle.

The preceding lemma is used to show the following: if a minimum Hamiltonian cycle
contains an edge e that is not 15-GG, then a set of edges (including e) can be deleted from
the cycle followed by the insertion of a different set of edges to build a Hamiltonian cycle
with lower weight, thereby contradicting the minimality of the original cycle.

Theorem 1. Given a set P of n points in the plane in general position, the graph 15-GG
contains a Hamiltonian cycle.

Proof. Let H be the set of all Hamiltonian cycles through the points of P . Define a total
order on the elements of H in the following way. Given an element h ∈ H, define the
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Figure 2: Illustration for Theorem 1

distance sequence of h as the lengths of the edges of the cycle sorted from longest to
shortest, denoted ds(h). Element x ∈ H is greater than y ∈ H if the first place where
ds(x) differs from ds(y), the value in ds(x) is greater than that of ds(y). If two elements
have exactly the same distance sequence, break ties arbitrarily to get a total order. Let
m = a0, a1, . . . , an−1 be the cycle in H with minimum distance sequence. We will show
that all of the edges of m are in 15-GG. We proceed by contradiction.

Suppose that there are some edges in m that are not in 15-GG. Let e = [aiai+1] be
the longest edge that is not in 15-GG (all index manipulation is modulo n). Let C be the
circle with ai and ai+1 as diameter. Let r = |aiai+1|/2 be the radius of C.

Claim 1: No edge of m can be completely inside C. Suppose there was an edge f =
[aj , aj+1] inside C. By deleting e and f from m and adding either [ai, aj ], [ai+1, aj+1] or
[ai, aj+1], [ai+1, aj ], we construct a new cycle m′ whose distance sequence is strictly smaller
than that of m since d(ai, ai+1) > max{d(ai, aj), d(ai+1, aj+1), d(ai, aj+1), d(ai+1, aj)}.
But this is a contradiction since m has the minimum distance sequence.

Therefore, we may assume that no edge of m lies completely inside C. Since e is not in
15-GG there must be at least w ≥ 16 points of P in C. Let U = u1, u2, . . . , uw represent
these points indexed in the order we would encounter them on the cycle starting from ai.
Let S = s1, s2, . . . , sw and T = t1, t2, . . . , tw represent the vertices where si is the vertex
preceding ui on the cycle and ti is the vertex succeeding ui on the cycle.

Refer to Figure 2 for the following two claims. Let D be the circle centered at ai+1
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with radius 2r.

Claim 2: No point of T can be inside D. Suppose tj ∈ T is in D, then d(tj , ai+1) < 2r.
Construct a new cycle m′ by removing the edges [uj , tj ], [ai, ai+1] and adding the edges
[ai+1, tj ], [ai, uj ]. Since the two edges added have length strictly less than 2r, ds(m′) <
ds(m) which is a contradiction.

Let c be the center of circle C. Let C ′ be the circle centered at c with radius 2r.

Claim 3: There are at most 4 points of T in C ′. Suppose that there are 5 points of T
in C ′. Note that the 5 points are in C ′ ∩D by the previous claim. However, this means
that there must be two points tj , tk such that ∠(tj , c, tk) < π/5. But this implies that
|tjtk| < 2r.

Since |T | ≥ 15, there are at least 11 points of T outside C ′. Decompose the plane
into 10 cones of angle π/5 centered at c. By the pigeon-hole principle, there must be
one cone with at least 2 points, tj and tk. By Lemma 1, d(tj , tk) is either less than 2r
or less than max{d(c, tj) − r, d(c, tk) − r}. Construct a new cycle m′ from m by first
deleting [tj , uj ], [tk, uk], [ai, ai+1]. This results in three paths. One of the paths must
contain both ai and either tj or tk. Without loss of generality, we suppose that ai and
tj are on the same path. Add the edges [ai, uk], [ai+1, uj ], [tj , tk]. The resulting cycle
m′ has a strictly smaller distance sequence since max{d(tj , uj), d(tk, uk), d(ai, ai+1)} >
max{d(ai, uk), d(ai+1, uj), d(tj , tk)}.

3 Size of the Delaunay Graphs

In this section we provide upper and lower bounds on the size of the order-k Delaunay
graph. We begin by giving an upper bound on the number of edges of k-DG, i.e., on the
number of edges with order at most k in a given set of points. This bound can be derived,
as we show next, taking into account the relation of k-DG with higher order Voronoi
diagrams [26].

Theorem 2. Let P be a set of points in general position and let |k-DG| be the number of
edges of the order-k Delaunay graph. Then

|k-DG| ≤ 3(k + 1)n− 3(k + 1)(k + 2).

If P is in convex position, then

|k-DG| ≤ 2(k + 1)n− 3
2
(k + 1)(k + 2).

Proof. Let bpq be the bisector of points p and q and let Vk(P ) be the order-k Voronoi
diagram of P . If there exists a circle through p and q containing at most i points, then
there exists a segment of bpq which is an edge of Vi+1(P ). Therefore, an upper bound on
the number of bisectors that contribute at least one edge to some Voronoi diagram in the
set {Vi(P )|1 ≤ i ≤ k + 1} provides an upper bound on the size of k-DG. To bound this
quantity, we start by considering a single bisector bpq. Let Bpq be the union of all the
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edges in the set {Vi(P )|1 ≤ i ≤ k + 1} that lie on bpq. Note that Bpq partitions the line
bpq into a number of intervals or components. Let λk denote the number of components
summed over all

(
n
2

)
bisectors. Thus, λk is an upper bound on the number of bisectors

that contribute at least one edge.
D. T. Lee [23] (see also [9]) showed that the number of edges in the order-k Voronoi

diagram is exactly (6k − 3)n − 3k2 − ek(P ) − 3
∑k−1

i=1 ei(P ) for all 1 ≤ k ≤ n − 1, where
ei(P ) is the number of subsets of i points of P that can be defined as the intersection of
P with a half-plane. Using this, Edelsbrunner et al. [10] prove the following (note that in
our definition λk refers to Vk+1(P )):

λk = 3(k + 1)n− 3
2

(k + 1)(k + 2)−
k+1∑

i=1

ei(P ).

Therefore, the result follows from known bounds on ei(P ): if P is in convex position,
then

∑k+1
i=1 ei(P ) = (k + 1)n, while

∑k+1
i=1 ei(P ) ≥ 3

(
k+2
2

)
for every set P [10, 24].

It is worth remarking that the conjecture by Urrutia [32] stating that every set of n
points has a pair such that every circle through them contains at least n

4 − 1 points in its
interior is equivalent to say that k-DG cannot be the complete graph if k < n

4 − 1.
The previous approach is not useful in providing a lower bound on the size of k-DG

because a bisector bpq can have as many as k connected components when all Voronoi
diagrams up to order k + 1 are put together. Therefore, each edge in k-DG may be
overcounted as many as k times. Dividing the above bounds by k gives trivial lower
bounds since we know that k-DG contains a triangulation of the point set for all k ≥ 0.
Observe that k-DG is the complete graph for k ≥ n

2 since for every pair of points, there is
a circle through that pair of points containing less than half the points. We now prove a
slightly stronger than trivial lower bound.

Theorem 3. Let P be a set of points in general position and let |k-DG| be the number of
edges of the order-k Delaunay graph. Then

|k-DG| ≥ (k + 1)n if k < n
2 − 1.

Proof. Let δk(p) be the degree of p in the order-k Delaunay graph. We claim that δk(p)
is at least 2(k + 1) for every p ∈ P and every k < n

2 − 1. In order to prove the claim, let
` by a line through p leaving in both sides at least k points of P . Now consider the two
families of circles tangent to ` at p ordered according to increasing diameter. If q is the
k-th point reached by one of the families, then pq ∈ (k − 1)-DG and the claim follows.
Now we finish observing that |k-DG| = 1

2

∑
p∈P δk(p).

While general order-k Delaunay graphs are an interesting family of proximity graphs,
it should be clear that the low order ones are the most interesting from the viewpoint of
applications as they are conceptually the closest to the Delaunay triangulation (see also
[21]). This leads us to an improved lower bound for the number of edges of order 1. Before
proving this lower bound, we make an observation that follows easily from the definition
of 1-DG.
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Figure 3: Illustration for the proof of Lemma 2.

Observation 1. Let DT = 0-DG be the Delaunay triangulation of P .

a) The edge pq has order 1 if and only if pq 6∈ DT and there exists a point r ∈ P such
that pq ∈ DT (P r {r}). In this situation, we say that pq is generated by r.

b) If pq is generated by r, then pr, qr ∈ DT . Therefore, an edge pq with order 1 is
generated by at most 2 points of P . Furthermore, if pq is generated by 2 points,
then it is the diagonal (which is not a Delaunay edge) of a pair of adjacent triangles
of DT in convex position.

Lemma 2. Let G be the dual graph of DT and let t1 = pqr and t2 = pqs be a pair of
adjacent triangles of DT in convex position. We say that t1 ∼ t2 if rs has order 1 and is
generated by 2 points (which are necessarily p and q). The relation “∼” is a (in general
non perfect) matching in G.

Proof. We have to show that if t1 ∼ t2 then t1 6∼ t3 for a triangle t3 adjacent to t1. Without
loss of generality, we can assume that t3 has vertices qru as in Figure 3. By contradiction,
let us assume that t1 ∼ t3. Then, the edge pu is generated by q and r and, therefore, rs
and pu belong to DT (P r {q}), which is impossible because two edges of DT (P r {q})
cannot cross.

Theorem 4. Let ∆1(P ) be the number of edges of order 1 of an n-point set P . Then,

(a) ∆1(P ) ≥ n− 5 for every set P .

(b) If P is in convex position, then ∆1(P ) ≥ d3n
2 e − 5.

Proof. Let us denote by δ(p) the degree of p in DT . According to Observation 1, the edges
of order 1 generated by a point p ∈ P are exactly the edges in DT (P r {p}) which are
not in DT (P ), that is to say, the edges needed to triangulate the hole that appear when
p (and the adjacent edges) are removed from DT (P ). Therefore, if points are in convex
position, every point p ∈ P generates exactly δ(p) − 2 edges of order 1. On the other
hand, from Lemma 2 it follows that the number of edges generated by 2 points is at most
bn/2c − 1. Then,

∆1(P ) ≥
∑

p∈P

(δ(p)− 2)−
(⌊n

2

⌋
− 1

)
=

⌈3n

2

⌉
− 5
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Figure 4: a) Edges generated by p are in grey. b) Point r contributes to δ∗(p) and to δ∗(q).

As for (a), we start with the observation that the number of edges generated by any interior
point p is δ(p) − 3, but the situation is more complicated if p is a vertex of the convex
hull (see Figure 4.a). If we denote by δ∗(p) the number of neighbors of p in DT which are
vertices of the convex hull of S r {p}, then the number of edges of order 1 generated by
p is δ(p)− δ∗(p). Let B and I be the points of P that are, respectively, on the boundary
and in the interior of the convex hull of P . Counting twice the edges of order 1 generated
by 2 points we have

∑

p∈I
(δ(p)− 3) +

∑

p∈B
(δ(p)− δ∗(p)) = 4n− 6− (|I|+

∑

p∈B
δ∗(p)

)
. (1)

Finally, consider t∗ = max{0,
∑

p∈B δ∗(p) − 2|B| − |I|}. We observe that there are at
least t∗ interior points that contribute twice to

∑
p∈B δ∗(p). Let r be a point contributing

both to δ∗(p) and to δ∗(q). Clearly, p and q have to be consecutive vertices of the convex
hull and, moreover, if we label the points in such a way that r is on the left of pq as in
Figure 4.b, then the unique point to the right of pr is q and the unique point to the left
of qr is p. Then the triangle pqr cannot be matched as defined in Lemma 2. Observing
that t∗ ≤ |B|, it follows that

∆1(P ) ≥ 2n− 6− t∗ − 1
2
(2n− |B| − 2− t∗) = n− 5 +

|B| − t∗

2
≥ n− 5

4 Triangulations with order-k edges

In this section we study the combinatorial structure of the set of triangulations that can
be constructed with edges of order at most k, i.e., triangulations which are subgraphs
of the order-k Delaunay graph. In particular, we study properties of the flip-graph. We
begin with a few relevant definitions required for this section.
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Definition 1. Let T be a triangulation of P and let prq and pqs be two adjacent triangles
in T .

1. The edge pq is locally Delaunay if the circle through p, q, and r does not contain the
point s.

2. If the quadrilateral prqs is convex, the operation of removing the edge pq and adding
the edge rs to T is called a flip.

Definition 2. Let us denote by Tk(P ) the set of triangulations which are subgraphs of
k-DG(P).

1. A flip is k-legal provided that the triangulation T prior to the flip and the triangu-
lation T ′ resulting from the flip are both in the set Tk(P ).

2. The order-k flip-graph FGk(P ) is defined as follows: the set of vertices of FGk(P )
are the elements of Tk(P ). Two vertices T, T ′ in FGk(P ) are adjacent if the two
triangulations T, T ′ ∈ Tk(P ) differ by exactly one k-legal flip.

Remark: At this point it may be worth noting that our definition for Tk(P ) is different
from the concept of order k triangulation, as defined by Gudmundsson et al. in [14]: a
triangulation T is said to have order k if the circumscribing circle of every triangle in T
contains at most k points. Clearly, if a triangulation T has order k, then T ∈ Tk(P ), but
the converse is not true. Therefore, the number of triangulations in Tk(P ) is bigger than
the number of order k triangulations, which may be useful if we want to use higher order
triangulations in order to optimize some criteria as proposed in [14].

Notice that the flip of an order k-edge is not necessarily k-legal (as happens for example
in the Delaunay triangulation). Therefore, the question arises of whether FGk(P ) is
connected by flips. We show that if k = 1 or P is in convex position then FGk(P ) is
always connected and that it may be disconnected otherwise.

Theorem 5. FG1(P ) is connected for every set P .

Proof. It is well known that the only triangulation in which every edge is locally Delaunay
is the Delaunay triangulation (see [26]), and that starting with any triangulation we always
reach the Delaunay triangulation if we keep flipping current non locally Delaunay edges,
while that is possible. This can be seen, for example, by lifting the current triangulation
to the unit paraboloid and taking the associated polyhedral terrain on the lifted point set.
A non locally Delaunay edge of the triangulation gives a reflex edge of the terrain (as seen
from below), and its flip corresponds to sticking a tetrahedron below the lifted edge. The
terrain keeps ”going down” until the lower convex hull of the lifted point set is reached,
which corresponds to the Delaunay triangulation of the original point set.

Therefore, to show that FG1(P ) is connected, we can consider an arbitrary triangu-
lation T ∈ T1(P ) and show that, if T is not the Delaunay triangulation, then there exists
a 1-legal flip between an edge e ∈ T that is not locally Delaunay to an edge e′ that is
locally Delaunay. By repetition we obtain a path from T to the Delaunay triangulation
lying inside FG1(P ).
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Figure 5: Illustration for the proof of Theorem 5.

Let pq be an edge of T that is not locally Delaunay (then, it has order one) and let
rs be the edge that results when pq is flipped. Let C be a witness circle for pq (i.e., a
circle with pq on the boundary containing exactly one point). The point contained in C
is either r or s. In the following, we assume without loss of generality that r is contained
in C (see Figure 5.a).

Let c be the center of circle C and let D be the circle defined by points p, q, s with
center d. Consider the family of circles passing through p and q whose centers lie on the
line segment cd. In this family of circles, as the center moves from c to d, let C∗ be the
first circle passing through p, q, and a third point u. The circle C∗ contains r in its interior
since both C and D contain r in its interior. There are three different cases to consider:

1. If s = u, then rs has order zero and we can flip pq to rs.

2. If qsu ∈ T (Figure 5.b), then pu has order at most one and is locally Delaunay.
Therefore, we can flip qs to pu.

3. If qsu 6∈ T (Figure 5.c) we consider the triangle tvu ∈ T intersected by pu and its
adjacent triangle tvw (also intersected by pu). Without loss of generality, we can
assume that v and w lie on the same side of the line defined by the segment pu.
Observe that it may happen that edge wt coincides with qs. Any witness circle for
tv and for tw contains u, otherwise it would contain the points p and r, which is
impossible since the edges have order one. Therefore, the union of tvu and tvw is
a convex quadrilateral. Finally, because a witness circle of tw contains u and does
not contain v, it follows that uw is locally Delaunay (actually, it is a Delaunay edge)
and we can flip tv to uw.

In each of the three cases, we flipped an edge that was not locally Delaunay into an
edge that is locally Delaunay with order at most 1. The result follows.

Theorem 6. FGk(P ) is not necessarily connected if 2 ≤ k ≤ (n− 3)/3.

12
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Figure 6: FG2(P ) is not connected.

Proof. We first construct a triangulation T ∈ T2(P ) on a set P with 9 points and show
that no edge of the triangulation permits a 2-legal flip. Therefore, since FG2(P ) has at
least two vertices (T and the Delaunay triangulation of P ) and T is an isolated vertex of
FG2(P ), we see that FG2(P ) is not necessarily connected. We generalize this construction
for all 2 ≤ k ≤ (n− 3)/3.

We begin the construction of T of a set P with 9 points. Consider an equilateral
triangle t with vertices a1, a2, a3 and place points b1, b2, b3 close enough to the midpoints
of the edges but outside the triangle t (see Figure 6). Next, consider the circle passing
through a1a2 and the midpoints of the other two edges of t and place point c3 on the
midpoint of the circular arc joining a1 with the midpoint of a1a3, as shown in Figure 6.
Points c1 and c2 are placed similarly. It is easy to see that T ∈ T2(P ) and that T has only
three edges that can be flipped, a1a2, a2a3 and a3a1. However, the edges a2b3, a1b2 and
a3b1 have order three. Therefore, T is an isolated vertex in FG2(P ).

If we replace each point bi with a set of k− 1 points arbitrarily close and consider the
Delaunay triangulation of P constrained by the edges a1a2, a2a3 and a3a1 then we get an
isolated vertex in FGk.

We conclude this section by showing that FGk is always connected if P is in convex
position. We begin with a few helpful lemmas. Recall that o(pq) denotes the order of the
edge pq.

Lemma 3. Let pq be an edge with order k > 0 and let C be a witness circle for pq.

(a) If u ∈ C then o(up) < k and o(uq) < k.

(b) If u, v ∈ C then o(uv) ≤ k − 2.

Proof. It both cases, it is clear that we can shrink C and get a circle containing less than
k points for part (a) and at most k − 2 points for part (b).
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Let pq be an edge of T with order k > 0 and let H be one of the halfplanes defined by
the line supporting pq. We say that u is the first point of pq in the half plane H if u ∈ H
and the circle through p, q and u does not contain any point of P ∩H.

Lemma 4. Let pq be an edge with order k > 0 and let u and v be the first points of pq
(one on each half plane). Then we have:

(a) o(uv) < k.

(b) If o(vp) = k, then o(up) < k and o(uq) < k.

Proof. Let C be a witness circle for pq. Because o(pq) ≥ 1, C contains at least one of the
first points u or v. Without loss of generality assume it is u. We distinguish two cases:

– If u, v ∈ C from Lemma 3.b it follows that o(uv) ≤ k − 2.

– u ∈ C and v 6∈ C (see Figure 7). In this case, we observe that if we consider circles
passing through p and q and “moving” towards v, we reach v before any other point
enters or leaves the circle and, therefore, we get a circle passing through p, q and v,
containing u and k − 1 other points of the half plane. Therefore, o(uv) ≤ k − 1.

For the second part of the lemma, we observe that if o(vp) = k, then from Lemma 3 it
follows that v 6∈ C. Therefore, we can repeat the procedure of the previous paragraph
and get a circle passing through p, q and v and containing u and k − 1 other points in its
interior, showing that o(up) < k and o(uq) < k.

We are now ready to proof the following theorem.

Theorem 7. If P is in convex position, then FGk(P ) is connected for every k ≥ 0.

Proof. Let T ∈ Tk(P ) be a triangulation with exactly m order-k edges. We want to
find a sequence of k-legal flips that converts T into a triangulation T ′ ∈ Tk(P ) having
strictly less than m order-k edges. By iterating this process we end up with the Delaunay
triangulation, thereby showing that FGk is connected.
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Let pq be an edge of T with order k. We assume that the edge pq is horizontal and
denote by H+

pq and H−
pq the upper and the lower half planes defined by the line containing

pq. Finally, let u and v be the first points of pq in H−
pq and H+

pq, respectively. We start
by finding a sequence of legal flips in FGk such that pqu and pqv are adjacent triangles in
the triangulation. Let D be the circle passing through p, q and u. Because u is the first
point in H−

pq, we know that D does not contain any point of P ∩H−
pq. Let e1, . . . , ej be the

set of edges of T intersected by uv and contained in H−
pq, ordered from u to pq. Either p

or q is an endpoint of ej and, without loss of generality, we can assume that ej = pjq and
that up1p2 ∈ T , if we label the vertices suitably (see Figure 8).

Let Ci be a witness circle for ei. We claim that u ∈ Ci for i = 1, . . . , j. In order to
prove the claim, observe that if u 6∈ Ci, then p, q ∈ Ci. But then we get a contradiction
because from Lemma 3 it follows that o(pq) < o(ei) ≤ k.

Because u ∈ Ci, Lemma 3.a guarantees that o(upi) < k for i = 1, . . . , j and o(uq) < k.
However, we can only guarantee that o(up) ≤ k. In fact, if there is no witness circle of
pq containing u, then D contains k points (all of them in H+

pq) and it may happen that
o(up) = k. Now we remove the edges e1, . . . , ej and insert the edges up3, . . . , upj , uq, up
by a sequence of consecutive flips that correspond to a path inside FGk. Thus, all new
flipped edges, except perhaps up, have order strictly smaller than k.

We repeat the procedure in the upper half plane and introduce edges vq3, . . . , vqh, vp, vq
(again, all of them have order smaller than k, except perhaps vp or vq). Finally, we flip
the edge pq to uv, which has order smaller than k according to Lemma 4.b.

Let us count the number of order-k edges in the resulting triangulation. We claim that
at most one new edge with order k has been inserted. As observed before, only one new
edge in each half-plane can have order k. However, observe that if up, which is the unique
edge in H−

pq which could have order k actually reaches this bound, then from Lemma 4.b
it follows that o(vp) < k and o(vq) < k, thereby proving the claim.

So far, we have removed at least one edge with order k, namely pq, and have added at
most one new edge with order k. If the number of edges with order k has decreased, the
proof is finished, so suppose that the number of order k edges remains the same. Without
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loss of generality, we can assume that o(up) = k. In this situation, a witness circle for
pq does not contain u (the opposite would contradict Lemma 3.a). Therefore, the circle
D through p, q, and u contains k points (all of them in H+

pq). But then, if we repeat the
whole process, we know that all the edges inserted in H+

up have order smaller than k. This
shows that in this iteration either the number of order k edges decreases or the order k
edge which is inserted is contained in H−

up. Because P ∩H−
up ( P ∩H−

pq, we cannot run
into the case of maintaining the number of order k edges indefinitely.

5 An application of higher order Delaunay graphs

Given a set of n points in the plane, Har-Peled and Smorodinsky [17] showed how to assign
one of m colors to each of the n points such that every circle C containing more than one
point has the property that at least one of the points in C has a unique color. Such a
coloring is called a conflict-free coloring (CF-coloring for short). The Delaunay graph of
the n points is used in the coloring algorithm and also to show that m is O(log n). Har-
Peled and Smorodinsky show that this type of coloring finds application in the assignment
of frequencies in a cellular network. Let each color represent a distinct frequency. Let
the n points in the plane represent communication towers. Each tower is assigned a
communication frequency. When a client (i.e., cell phone) needs to communicate with
a tower, it searches for all towers within its communication range which is represented
by the circle C. Two towers communicating at the same frequency in the phone’s range
create interference. Therefore, to ensure good reception, it is desirable to always have at
least one tower within range communicating at a unique frequency. Their result implies
that O(log n) frequencies suffice to ensure this property. In this section, we generalize the
result in [17]. Recall that the maximum number of edges in (k − 1)-DG is ckn for some
constant c. We show that with log n/(log((2ck)2 − 1)− log((2ck)2 − 2)) colors, a set of n
points in the plane can be colored so that every circle containing at least k points contains
at least k points with unique color. We call such a coloring a k-conflict-free coloring. In
the context of cellular networks, this can be viewed as ensuring that for every client in
range of k or more towers, there always exists at least k different towers with which the
client can communicate without interference.

As noted in Theorem 2, the number of edges in (k− 1)-DG is at most ckn where c = 3
when the points are in general position and c = 2 when points are in convex position.
This implies that the average degree of a vertex in (k − 1)-DG is at most 2ck.

Lemma 5. Every (k− 1)-DG has an independent set of size at least n/((2ck)2− 1) where
each vertex in the set has degree at most 2ck.

Proof. The minimum degree in (k − 1)-DG is 2 and the average degree is at most 2ck.
Let V and E be the vertex and edge set of (k − 1)-DG. Let x be the number of vertices
in (k − 1)-DG with degree at most 2ck. Since 2|E| = ∑

v∈V deg(v), we have that 2ckn ≥
2x + (n − x)(2ck + 1). This implies that x ≥ n/(2ck − 1). Since there are at least
n/(2ck − 1) vertices with degree at most 2ck, there is an independent set of size at least
n/((2ck − 1)(2ck + 1)) where each vertex has degree at most 2ck.
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The coloring algorithm is virtually identical to the algorithm given in [17]

Algorithm 1 k-conflict free coloring of set S of n planar points
1: Set i = 0, where i denotes an unused color.
2: while |S| 6= 0 do
3: Let I be an independent set of size at least n/((2ck)2 − 1) in (k − 1)-DG(S).
4: Color all points in I with color i.
5: Remove I from S.
6: Increment i = i + 1.
7: end while

In the next lemma, we show that the above algorithm provides a k-conflict free coloring
and the total number of colors used is log n/(log((2ck)2 − 1)− log((2ck)2 − 2))

Lemma 6. With log n/(log((2ck)2 − 1)− log((2ck)2 − 2)) colors, a set of n points can be
colored so that every circle containing at least k points contains k points whose color is
unique.

Proof. First, at each iteration, we remove an independent set of size at least n/((2ck)2−1).
Let d = (2ck)2 − 1. Let C(n) represent the number of colors used for a (k − 1)-DG graph
with n vertices. We can bound C(n) with the following recurrence: C(n) ≤ C((d −
1)n/d) + 1. This recurrence resolves to C(n) ≤ log n/(log d− log(d− 1)) as required.

Next, we show that the coloring is k-conflict free. Let C be any circle containing a set
P of at least k points. Consider the k points in C whose colors have highest value (recall
that the first independent set was given color 0 and an independent set removed at step i
was given color i). If all these k points have unique colors, the lemma is proved. For sake
of a contradiction, assume that at least 2 of these k points have the same color. Let i be
the largest color whose value is not unique. Note that there are fewer than k points in P
whose color value is strictly greater than i. Also note that at iteration i of the algorithm,
all points with color less than i have been removed from P . Let Pi be the set of points in
P receiving color i. Since C contains Pi, there is a circle C ′ contained in C that has two
points x, y of Pi on its boundary and no points of Pi in its interior. However, since there
are fewer than k points whose color is larger than i, this means that C ′ contains fewer
than k points in its interior at iteration i of the algorithm. However, this contradicts the
fact that x and y are in an independent set selected at iteration i.

Corollary 1. A set of n points in general position can be colored with log n/(log((6k)2 −
1)− log((6k)2−2)) colors so that every circle containing at least k points contains k points
whose color is unique. If the points are in convex position, then log n/(log((4k)2 − 1) −
log((4k)2 − 2)) colors are sufficient

Note that we only used the fact that there is a large number of vertices of bounded
degree in (k− 1)-DG in order to show that there is a sufficiently large independent set. If
one can find a larger independent set that is guaranteed to exist in all (k− 1)-DG graphs,
then the preceding bounds can be improved.
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6 Concluding remarks and open problems

In this paper, we have established several properties of the higher order Delaunay graphs,
yet many questions remain open. Among these, finding the minimum value for which
k-DG is always Hamiltonian is an especially intriguing problem. Although we have only
been able to prove Hamiltonicity for 15-GG (and hence 15-DG), we believe that 1-DG is
Hamiltonian.

On the other hand, finding tight bounds for the size of the graphs is a hard problem
in which progress may come from different directions related to this issue.

We believe, as also mentioned in [21], that triangulations that use lower order triangles
or edges –especially 1st order– are the most interesting, as they are the slightest departure
from the Delaunay triangulation. However, finding the best 1st order triangulation is
an NP -hard problem for many criteria, as proved in [21]. Hence another natural future
direction of research made possible by our connectivity result is to experiment with the
flip heuristics for triangulations that are subgraphs of 1-DG. This direction has already
been considered in [21] for the case in which the focus is on triangles more than on edges.

Finally, let us comment on our assumption throughout the paper that our point sets
contain no collinearities and no cocircularities. When that is not the case, one may assume
that in a first step degeneracies have been removed by using some perturbation scheme
(see [11], [33] and [12]). A second option would be to look for a canonical way of defining
the graphs that leads to no ambiguity, as suggested by Edelsbrunner [9] for the Delaunay
triangulation via the globally equiangular triangulation, which can also be computed in
O(n log n) time [25]. For the 0-order Delaunay case an option that has also been considered
in the literature is to say that two points p, q ∈ P are adjacent when there is some circle
through p and q whose interior is empty of points from P . However, notice that in this
case a set of cocircular points such that the circle through them contains no other point
of P defines a complete subgraph of this Delaunay graph, that hence can have quadratic
size. For the problems in this paper, the second and third options require a complete
reformulation of many of our results and proofs, or simply make no sense, as is the case
for the upper bounds on the size of the graphs. Hence, we prefer to defer these explorations
to future research and avoid obscuring the comprehension of the basic concepts.
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