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Abstract

Given two n-vertex plane graphs G1 = (V1, E1) and G2 = (V2, E2) with

|E1| = |E2| embedded in the n × n grid, with straight-line segments as
edges, we show that with a sequence of O(n) point moves (all point moves

stay within a 5n × 5n grid) and O(n2) edge moves, we can transform the

embedding of G1 into the embedding of G2. In the case of n-vertex trees,
we can perform the transformation with O(n) point and edge moves with

all moves staying in the n × n grid. We prove that this is optimal in the
worst case as there exist pairs of trees that require Ω(n) point and edge

moves. We also study the equivalent problems in the labeled setting.

1 Introduction

Informally, a local transformation is an operation performed on the vertices and

edges of a graph. The term local is used because generally the operation does

not affect the whole graph. Typically, the vertices of the graph affected by a

local transformation are the neighborhood of a constant number of vertices. For

example, an edge contraction∗ is a local transformation that affects the neigh-

borhood of two vertices.

Once a local transformation has been defined, properties and applications of

the local transformation with respect to a given class of graphs are studied [3–6,

9–12, 14, 16–20, 23]. A natural question with respect to local transformations is:
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Does performing a local transformation of a graph in a given class keep the graph

in the same class? For example, if the class is bipartite graphs, then performing

an edge contraction on a bipartite graph does not necessarily keep it bipartite.

However, if the class of graphs is complete graphs, then edge contractions do

keep the graph in the same class. Another question that is often studied is:

Given an instance of a graph of a particular class, can all the graphs of this class

be enumerated via local transformations on the given instance?

The local transformation that initiated this study is referred to as an edge flip

or more generally an edge move. The class of graphs on which edge flips are

defined is triangulations (and sometimes near-triangulations†) and edge moves

are normally defined on planar graphs. The operation of an edge flip or edge

move is simply the deletion of an edge, followed by the insertion of another edge

such that the resulting graph remains planar and simple. More formal definitions

are given in the next section.

Wagner [22] proved that given any two triangulations G1 = (V1, E1) and

G2 = (V2, E2) with |V1| = |V2| = n, there always exists a finite sequence of

edge moves that transforms G1 into a graph G3 = (V3, E3) that is isomorphic

to G2. That is, there exists a mapping φ : V2 → V3 such that for u, v ∈ V2,

uv ∈ E2 if and only if φ(u)φ(v) ∈ E3. Subsequently, Komuro [13] showed that

in fact O(n) edge flips suffice. Recently, Bose et al. [2] showed that O(log n)
simultaneous edge flips suffice and are sometimes necessary. This setting of the

problem is referred to as the combinatorial setting since the triangulations are

only embedded combinatorially, i.e. the cyclic order of edges around each vertex

is defined.
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Delete edge de and add edge ac. This is a valid combinatorial edge

move since the graph is still planar but it is an invalid geometric

edge move since the edges ac and be intersect properly.
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Original graph Invalid geometric flip Valid combinatorial flip

Figure 1: Valid combinatorial edge flip but invalid geometric edge flip.

In the geometric setting, a triangulation or near-triangulation is embedded

in the plane such that the vertices are points and the edges are straight-line

segments. Henceforth, we only consider graphs embedded in the plane hav-

ing straight-line segments for edges. Edge flips and edge moves are still valid

operations in this setting, except that now the edge that is added must be a

†A near triangulation is a plane graph where every face except possibly the outerface is a

triangle
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line segment and this line segment cannot properly intersect any of the existing

edges of the graph. This additional restriction implies that there are valid edge

moves in the combinatorial setting that are no longer valid in the geometric set-

ting since eventhough the graph resulting after a move is planar and simple, it

does not have a plane embedding. See Figure 1.

Lawson [15] showed that given any two near-triangulations N1 and N2 em-

bedded on the same n points in the plane, there always exists a finite sequence

of edge flips that transforms the edge set of N1 to the edge set of N2. Hurtado

et al. [12] showed that O(n2) flips are always sufficient and sometimes neces-

sary. Subsequently, Galtier et al. [9] showed that O(n) simultaneous edge flips

are sufficient and sometimes necessary.

Note that there is a discrepancy between the combinatorial result and the

geometric one. In the combinatorial setting, Wagner [22] showed that every

triangulation on n vertices can be attained from every other triangulation via

edge flips. In the geometric setting, Lawson [15] showed that only the near-

triangulations that are defined on the specified point set can be attained via edge

flips. For example, in the point set shown in Figure 2, no planar K4 (complete

graph on 4 vertices) can be drawn on the given point set without introducing a

crossing. In fact, in the geometric setting, given a set of points in convex position,

the only plane graphs that can be drawn without crossing are outer-planar.

Given point set Straight-line embedding of K4 has a crossing

Figure 2: Discrepancy between combinatorial and geometric setting.

It is precisely this discrepancy that sparked our investigation. The first ques-

tion we asked is whether or not there exists a simple local transformation that

permits the enumeration of all n-vertex triangulations in the geometric setting.

In order to answer this question, the local transformation must be more general

than an edge move. Two key ingredients need to be specified for this question.

First, we need to specify the set of points P on which these graphs are embedded

and on which the transformations can be performed. To overcome the discrep-

ancy with the combinatorial setting, this set of points must have the property

that every n-vertex triangulation has a straight-line embedding on an n-point

subset of P . Such a set of points is called a universal point set. Schnyder [21]

showed that the n × n grid is a universal point set for all n-vertex planar graphs

(see also [8]). Therefore, a grid is a natural choice for this setting. However,

using a grid comes at a cost since there are many collinear points in a grid, we

need to deal specifically with degeneracies. Despite this obstacle, we use grids

as our universal point set and we outline the exact grid sizes required for our

results. All of our grid sizes are within a constant of the optimal for straight-line
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embeddings of planar graphs. It is important to keep the grid size as small as

possible since large grids hinder practical applications of these transformations.

The second ingredient is the set of allowable local transformations. Besides

the edge move, the other local transformation we use is a point move. A point

move is simply the modification of the coordinates of one vertex. The move is

valid provided that after moving the vertex to a new grid point, no edge crossings

are introduced.
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Edge move: ed to af

Point move vertex a.

Figure 3: Example of an edge move followed by a point move

2 Transforming One Plane Triangulation to Another

In this section, we show that O(n) point moves and O(n2) edge moves suffice

to transform one plane n-vertex triangulation into another. The first temptation

is to simply try to mimic a combinatorial flip in the geometric setting with point

and edge moves. However, this approach proved to be quite difficult to charac-

terize the point and edge moves needed to mimic one combinatorial flip. In our

proof, we draw ideas from Wagner’s original result without mimicking combina-

torial flips. Essentially, we show how to transform any given plane triangulation

into a canonical one, which immediately implies the result.
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More precisely, let G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| =
n be two triangulations embedded in an n × n grid. Let the origin (0, 0) of

this grid be the bottom left corner. Let P be a 5n × 5n grid with bottom left

corner located at (−2n,−2n) and top right corner located at (3n, 3n). During

the whole sequence of moves, the location of every point move is a grid point of

P (i.e. P is our universal point set). We show how to construct a sequence of

O(n2) edge moves and O(n) point moves that transforms both G1 and G2 into

a canonical form. The canonical triangulation is a triangulation where the outer

face consists of vertices located at (−2n,−1), (3n,−1), and (⌈n/2⌉, 3n). The

other n− 3 vertices are located at (⌈n/2⌉, 3n− i), 1 ≤ i ≤ n− 3. The two bottom

corner vertices are stars adjacent to all other vertices and the graph induced

by the remaining vertices is a path which we will call the spine. The canonical

triangulation is shown in Figure 4. Note that once we have an embedding of

the canonical triangulation, the actual location of the coordinates is no longer

important because with O(n) point moves, it is fairly simple to move from one

embedding of the canonical triangulation to any other as long as the spine is on

a vertical grid line and the outer-face forms a triangle.

(−2n,−1) (3n,−1)

(⌈n/2⌉, 3n)

n × n grid

Figure 4: Illustration of the canonical triangulation and the initial grid.

Before showing how to construct the sequence of point and edge moves, we

need to establish a few basic building blocks. One useful tool is the result by

Hurtado et al. [12]

Theorem 1. [12] Let T1 and T2 be two triangulations whose vertex set is a set of

n points in the plane. With O(n2) edge moves, T1 can be transformed into T2.

However, a key technical lemma in their proof of Theorem 1 is an essential

tool in our work.
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Lemma 1. [12] Let T = (V,E) be an arbitrary near-triangulation whose vertex

set is a set of n points in the plane. Let a, b, c be three consecutive vertices on the

outerface of T . Let P be the path from a to c on the convex hull‡ of V \ b. With

precisely k edge moves, where k is the number of edges of T that intersect P , we

can transform T into a triangulation that contains P . Note that k is O(n).

Next, we observe two simple facts about triangles that will be helpful in the

sequel.

Observation 1. Let △(abc) be a triangle in the plane. Let x be a point contained

in the interior of the triangle. Any line through x which has both b and c in one

half-plane must have a in the other and must intersect the line segments ab and ac.

Observation 2. Let a = (0, 0), b = (x1, y1) with x1, y1 > 0, c = (x1, y1 + 1) and

d = (x2, y2) with x2 > x1 and y2 ≥ (y1 + 1)x2/x1. The point c is contained in the

interior of triangle △(abd).

We now describe a sequence of edge moves and one point move which we

will call an apex slide. The setting for an apex slide is the following. Let a, b, c be

the vertices of a 3-cycle in triangulation G (i.e. △(abc) is either a face of G or

a separating triangle in G). Let x be a point such that xbc forms a triangle with

both x and a are on the same side of a half-plane defined by the line through bc.
Let D be all the vertices of G\a in △(abc). The set D is contained in △(xbc), and

every edge in G intersected by segment xb or xc is adjacent to a. See Figure 5

for an illustration.

Figure 5: Apex Slide

Lemma 2. With O(n) edge moves and one point move, vertex a can be moved to

point x.

Proof. Let D be the vertices of G\a in △(abc). Let C = c0, c1, . . . , ck be the clock-

wise order of the convex hull of D starting at b = c0 and ending at ck = c. By

Lemma 1, with O(n) edge moves, we can convert the triangulation contained in

‡The convex hull of a set of points is the smallest convex polygon containing the set. See any

standard reference in Computational Geometry [7] for an overview.
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abc to one which contains the segments aci and the edges of C. Once this is ac-

complished, Observation 1 implies that we can move a to x without introducing

any crossing since C is contained in both △(abc) and △(xbc) and by construction

no other edge of G intersects xb or xc. Thus, a total of O(n) edge moves and 1

point move suffice as required.

To initiate the whole process, we need to show how given a triangulation

embedded in the n × n grid we can always move the vertices of its outerface to

the coordinates (−2n,−1), (3n,−1) and (⌈n/2⌉, 3n). In order to continue, we

need to define the wedge of a convex vertex. Let C be a convex polygon on n
vertices. Let v be a vertex of C, and e1, e2 the two edges of C adjacent to v.

Given the line l1 (resp. l2) defined by the endpoints of e1 (resp. e2), let h1 (resp.

h2) be the half-plane defined by this line that does not contain the interior of

C. The wedge of v denoted W (v) is h1 ∩ h2. The angle of a wedge is the angle

between the two rays defining the boundary of the wedge. The property of a

wedge that we will exploit throughout is the following: given a △(abc), let x be

a point in W (a). Note that △(abc) ⊂ △(xbc). This containment property allows

one to use apex slides.

Lemma 3. Given a triangulation G = (V,E) embedded in the n×n grid, with O(n)
edge moves and at most 8 point moves, we can transform it into a triangulation

whose outerface has coordinates (−2n,−1), (3n,−1) and (⌈n/2⌉, 3n). All other

vertices of G have coordinate values between 0 and n (i.e. they are in the original

n × n grid).

Proof. Let V = v1, v2, . . . , vn be labeled such that v1, v2 and v3 are the vertices on

the outerface. Let the coordinates of each vi be (xi, yi) with 0 ≤ xi, yi ≤ n. Since

the outerface is a triangle, the sum of the angles of the wedges of its vertices is

π. This means that one of its vertices permits an apex slide vertically (either up

or down) and one of its vertices permits an apex slide horizontally (either left

or right). Note that these can be the same vertex. Without loss of generality,

assume that v1 can be moved left. All other cases are symmetric.

The fact that v1 can be moved left means that the intersection of a horizon-

tal line through v1 with W (v1) is a ray rooted at v1 pointing left. Move v1 to

(−2n, y1). After this move, notice that the angle of the wedge at v1 is strictly less

than π/2. This implies that v1 cannot be moved vertically. Therefore, one of v2

or v3 can be moved vertically. Assume, without loss of generality, that v2 can be

moved down. Again, all other cases are symmetric. Move v2 to (x2,−2n) each

with an apex slide. This amounts to O(n) edge moves and 2 point moves. Next,

apply two apex slides to move v1 to (−2n, n + 1) and v2 to (n + 1,−2n). Both

these moves can be applied since by construction no segment with one endpoint

on the segment [(−2n,−1), (−2n, n + 1)] and the other endpoint on segment

[(−1,−2n), (n + 1,−2n)] intersects the original n × n grid.

Once these moves have been applied, the outerface is such that v3 allows an

apex slide up to (x3, 3n). Once this has been accomplished, three more apex

slides place the three vertices in canonical position. A total of 8 apex slides were

used giving the desired result.

We now describe the main step in the process. Let a, b, c be the vertices of

the outerface of a triangulation G embedded on a grid, such that b and c lie on
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the same horizontal grid line L1, there are at least 5n − 1 grid points between

b and c, the vertex a is above b and c. Let x be a point of the grid that is not a

vertex of G such that a and x lie on the same vertical grid line L2 such that the

grid point z = L1 ∩ L2 is between b and c with at least 2n grid points between

b and z and at least 2n grid points between c and z. The triangle △(abc) is

the outerface of G and the point x be strictly inside triangle △(abc). All other

vertices of G are strictly inside triangle △(bxc). There are at least n grid points

on the segment ax. Notice that if we are given a triangulation in an n × n grid

and apply Lemma 3, then we meet the conditions specified above.

Lemma 4. With O(n2) edge moves and O(n) point moves, we can transform G
into canonical form.

Proof. We proceed by induction on the number h of vertices of G in △(bxc).

Base Case: h = 0. The lemma holds trivially since no moves are required.

Inductive Hypothesis: 0 ≤ h ≤ k, k > 0. Assume that d1h
2 edge moves and d2h

point moves suffice with constants d1 and d2.

Inductive Step: h = k + 1. Let r be the first grid point below a. Let C =
c0, c1, . . . , cm+1 be the clockwise order of the convex hull of the vertices of G \ a
starting at b = c0 and ending at c = cm+1. Apply Lemma 1, to convert G to a

triangulation containing C and all segments aci for vertices ci of the convex hull.

This is accomplished with d3k edge moves for constant d3.

Let cjcj+1 be the edge of the convex hull that intersects the vertical line

through ax. If the line through ax contains a vertex of the convex hull, assume

this vertex is cj . There are two cases to consider.

Case: One of cj or cj+1 is a vertex of the convex hull. Assume without loss of

generality that cj is a convex hull vertex. Since cj is a vertex of the convex hull,

the points cj−1, cj , and cj+1 are not collinear. Since the grid point r is in triangle

△(acj−1cj+1) by construction, we can apply an apex move to move point cj to r.

Case: The edge cjcj+1 is in the interior of the convex hull edge e = csct. Assume for

the moment that the edge e has positive slope. Since cs is a vertex of the convex

hull, this means that cs−1, cs and cs+1 are not collinear. By Observation 2, there

is a grid point y one unit vertically above cs inside triangle △(acs−1cs). Apply an

apex move to move cs to y. This removes the collinearity from the convex hull.

Now the edge yct is on the convex hull. Recompute the convex hull and apply

Lemma 1 so that a is adjacent to all edges of the convex hull. Now we have

reduced the situation back to the previous case. A symmetric argument holds if

e has negative slope.

Therefore, with d4k edge moves and at most 2 point moves, we remove one

vertex of G from △(bxc), and move it to r. Now, there are only k vertices of

G remaining in the triangle △(bxc). Apply Lemma 1 so that r is adjacent to

all vertices on the convex hull of G \ {a, r}. We can now apply the inductive

hypothesis. The total number of edge moves is d1k
2+d4k and the total number of

point moves is d2k+2. If we set d1 > d4 and d2 > 2, then d1k
2 +d4k < d1(k+1)2

and d2k + 2 < d2(k + 1).
The lemma follows by induction.

We are now in a position to prove the main theorem of this section.
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Theorem 2. Given an n-vertex triangulation G = (V,E) embedded in the n × n
grid with straight-line segments as edges, with O(n2) edge moves and O(n) point

moves (all point moves stay within the grid [(−2n,−2n),(3n, 3n)]), we can trans-

form G into the canonical triangulation.

Proof. Let R represent the points of the n × n grid containing G and let P rep-

resent the universal point set. First apply Lemma 3 to G. Then, we can apply

Lemma 4. The theorem follows.

An immediate corollary is the following.

Corollary 1. Given two n-vertex triangulations G1 = (V1, E1) and G2 = (V2, E2)
embedded in the n × n grid with straight-line segments as edges, with O(n2) edge

moves and O(n) point moves (all point moves stay within the grid [(−2n,−2n),(3n, 3n)]),

we can transform G1 into G2

Remark: We note that with a little care, our grid size can be reduced to 3n×3n
at the expense of simplicity of exposition. We chose to keep the explanations

simple in order to easily convey the main ideas rather than get bogged down in

details.

3 Transforming One Tree to Another

In this section, we show that O(n) point and edge moves suffice to transform

one tree into another and this is optimal as there are pairs of trees that require

Ω(n) point and edge moves to transform one into the other.

Let G1 = (V1, E1) and G2 = (V2, E2) be two trees embedded in the plane

on an n × n grid with |V1| = |V2| = n. Let the origin (0, 0) of this grid P be

the bottom left corner. During the whole sequence of moves, the location of

every point move is a grid point of P . The approach is similar to that used for

triangulations, but since trees are a simpler structure, the number of moves and

the grid size are reduced.

Avis and Fukuda [1] showed that given any tree embedded in the plane,

with at most n − 2 edge moves, this tree can be transformed into a canonical

tree. The canonical tree they use is the star from the leftmost vertex. Moreover,

the sequence of edge moves is such that each new edge added does not intersect

any of the edges in the current tree. That is, if T is the current tree and the

edge move consists of adding e 6∈ T and deleting f ∈ T , then T ∪ e is a plane

graph. We call such an edge move a planar edge move. Unfortunately, we cannot

use this result directly, since it is proved for points in general position where no

three points are collinear and we are dealing with trees embedded in the grid.

However, we modify their result to account for the collinearities.

The canonical tree can no longer be the star from the leftmost point since

there may be collinearities. Let p1, p2, . . . , pn be the vertex set of the given tree T .

Relabel the points in the following manner. Let p1 be the leftmost, bottommost

point. Label the other points p2, . . . , pn in sorted order counter-clockwise around

p1 so that p1p2 and p1pn are on the convex hull, and if p1, pi, pj are collinear, then

i < j. The canonical tree is the following: the edge p1pi is in the tree if there

is no point pj, j 6= i in the interior of the segment p1pi. If the segment p1pi has

9



points in its interior, let pk be the interior point closest to pi. The segment pkpi

is in the tree. Note that essentially this builds paths of collinear vertices from p1.

The paths of collinear vertices shall be referred to as tentacles of p1. See Figure 6

for an illustration.

Figure 6: Canonical Tree.

Lemma 5. A tree T with n-vertices embedded in the n×n grid can be transformed

into the canonical tree with n − 2 edge moves. Each edge move is planar.

Proof. Let T be the given tree embedded on the points p1, . . . , pn labeled as

above. Call an edge pipj of T a transversal edge if the line through pipj does

not contain p1. We proceed by induction on the number t of transversal edges.

Base Case: t = 0. In this case, T is the canonical tree.

Inductive Hypothesis: t < k, k > 0. With t edge moves, T can be transformed

into the canonical tree.

Inductive Step: t = k. Avis and Fukuda [1] show that for points in general

position, if T is not a star from p1, there always exists an edge pipj ∈ T such

that no other edge of T intersects the interior of the triangle △(p1pipj). We

cannot apply their result directly since the points of T are not in general position.

However, the same argument shows the existence of a transversal edge pipj such

that for any point p in the interior of segment pipj, the segment p1p does not

intersect any other transversal edge.

Now, removing pipj disconnects T into two components C1 containing pi

and C2 containing pj . Without loss of generality, let p1 be in C1. Let p1 =
x1, x2, . . . , xa = pj be the vertices of T on the segment p1pj. Since p1 ∈ C1 and

pj ∈ C2, there exists a k such that xk ∈ C1 and xk+1 ∈ C2. Add edge xkxk+1 to

the tree. Since we have reduced the number of transversal edges with one edge

move, the result follows by induction.
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Lemma 5 gives us the freedom to move from any one tree T1 to any other

tree T2 defined on the same point set with 2n − 4 edge moves since we can

transform one tree to the other via the canonical tree. Now, to transform a tree

embedded on one point set to another tree embedded on a different point set,

we need to perform some point moves. Given an n-vertex tree T embedded in

the n × n grid, we show how to transform it into a path embedded on vertices

(0, i), 0 ≤ i ≤ n − 1. Let p1, p2, . . . , pn be the n points of T . Relabel these points

so that they are sorted by increasing X coordinate with p1 being the leftmost,

bottommost point. If two points pi and pj are on the same vertical grid line, then

i < j if pi is below pj. Now Lemma 5 implies that T can be transformed to the

path p1, p2, . . . , pn with 2n− 4 edge moves. We call such a path a monotone path

(see Figure 7 for an illustration of such a path).

Figure 7: A monotone path.

Lemma 6. A monotone path embedded on the n × n grid can be transformed to

the canonical path embedded on vertices (0, i), 0 ≤ i ≤ n − 1 with n point moves.

Proof. By definition, the half-plane to the left of the vertical line through the

leftmost point is empty. Therefore, the leftmost, bottommost point can be moved

to any grid point below it and to its left. Move it to (0, 0). Once this point is

moved, the next leftmost, bottommost point can be moved to (0, 1). The lemma

follows by induction.

Theorem 3. Given two trees T1 and T2 embedded on the n × n grid, with at most

4n−8 edge moves and 2n point moves, T1 can be converted to T2. All moves remain

in the original grid.

Proof. The theorem follows from the discussion above and Lemmata 6 and 5.

In order to show the lower bound, take an n-vertex star and an n-vertex path

each embedded on n different grid points. To convert the path to a star, we need

at least n−3 edge moves since all vertices of the path have degree at most 2 and

the star has a vertex of degree n − 1. Similarly, since none of the points of the

star coincide with the points of the path, we need at least n point moves to get

from the vertex set of the path to that of the star.
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Theorem 4. There exist pairs of trees T1 and T2 embedded on the n × n grid that

require at least n − 3 edge moves and at least n point moves to transform one to

the other.

4 Transforming One Plane Graph to Another

We now show how to generalize the results from Section 2 to plane graphs.

Given two plane graphs G1 = (V1, E1) and G2 = (V2, E2) embedded in the n×n
grid with |V1| = |V2| = n and |E1| = |E2| = m, we show how to transform

G1 into G2. We will assume that both graphs are connected. The obvious ap-

proach is to add dummy edges to both graphs until they are triangulations. Then,

apply the previous result and ignore the moves that concerning dummy edges.

Although this basic approach works, we need to address a few details along the

way.

We will show how to transform G1 into a canonical form. The problem is that

since G1 is not a triangulation, we need to specify precisely what the canonical

form is. Recall the canonical form for triangulations and label its vertices in

the following way. Let p1 and p2 be the left and right corners of the outerface

and let p3 be the apex. Label the vertices p4, . . . , pn in descending order on the

spine from p3. Label the edges adjacent to p1 by e0, . . . , en−2 in clockwise order

around p1 with e0 = p1p3 and en−2 = p1p2. Label all the edges adjacent to p2

except edge p1p2 and p2p3 by en−1, . . . , e2n−5, in counter-clockwise order with

en−1 = p2p4 and e2n−5 = p2pn.

Now, the value of m determines the shape of the canonical graph. Since G1

is connected and planar, n − 1 ≤ m ≤ 3n − 6. If m = n − 1, then the canonical

graph is a tree formed by the path from p3 to pn along with the edges p1p3 and

p2p3. If m > n−1, let k = m−n+1. Augment the canonical tree with the edges

e1, . . . , ek.

The first step is to triangulate G1. Bicolor the edges red and blue so that the

original m edges are red and all additional edges are blue. Next, we show how

to move three of the vertices of G1 to the coordinates (−2n,−1), (3n,−1) and

(⌈n/2⌉, 3n).

Lemma 7. Given a near-triangulation G embedded in the n × n grid, with O(n)
moves and at most 8 point moves, we can transform it into a near-triangulation

whose outerface has three vertices at coordinates (−2n,−1), (3n,−1) and (⌈n/2⌉, 3n).

All other vertices of G have coordinate values between 0 and n (i.e. they are in the

original n × n grid).

Proof. Similar to the proof of Lemma 3 since the outerface is a convex polygon so

one of the vertices of the polygon can be moved vertically and one horizontally.

By applying Lemma 7 to G1, we convert it to to a graph whose convex hull

consists of 3 vertices. Now, we can add more blue edges such that G1 is a

triangulation and no longer necessarily a near-triangulation. This permits us to

apply Theorem 2, which results in a canonical triangulation with m red edges

and the remaining are blue. The red edges are not necessarily in canonical
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position but at most m edge moves allow one to reshuffle the edges into correct

position. Therefore, we have the following:

Theorem 5. Given an n-vertex plane graph G = (V,E) embedded in the n×n grid

with straight-line segments as edges, with O(n2) edge moves and O(n) point moves

(all point moves stay within the grid [(−2n,−2n),(3n, 3n)]), we can transform G
into the canonical plane graph.

Corollary 2. Given two n-vertex plane graphs G1 = (V1, E1) and G2 = (V2, E2)
embedded in the n×n grid each having m edges, with O(n2) edge moves and O(n)
point moves (all point moves stay within the grid [(−2n,−2n),(3n, 3n)]), we can

transform G1 into G2

One aspect of this approach which may be unsatisfactory is that throughout

the sequence, the graph may become disconnected eventhough we start with a

connected graph. This begs the question: is there a way to guarantee that in

converting one plane graph into another, we remain connected throughout the

whole sequence? We answer this in the affirmative with a slight increase in the

number of edge moves but the total number of edge moves remains quadratic.

Note that point moves do not change the connectivity of a graph. Therefore,

we solely need to concentrate on edge moves. The main tool we used for edge

moves in triangulations is Lemma 1. The key idea is to maintain a connected

spanning red graph after every edge flip. We prove the following.

Lemma 8. Let G be an n-vertex near-triangulation. Let a subset of the edges of

G be colored red such that the graph induced by the red edges is connected and

spanning. The remaining edges of G are colored blue. Let e be an edge of G to be

flipped. With at most 1 edge move, we can flip e such that the graph induced by the

red edges remains connected and spanning, after each of the edge move and edge

flip.

Proof. Let R be the graph induced by the m red edges. We need to show that we

can flip an edge e of G such that R remains connected after the flip. Let e be the

edge to be flipped. If e is blue, then flipping e does not affect the connectivity

of the graph induced on the red edges. If e is red, then the only way that the

connectivity of R is affected is if e is a cut edge§ of R.

Since e is in G, e is adjacent to at least one triangular face of G. Let a, b, c with

e = ab be the three vertices defining this face. The edges bc and ac cannot both

be red since this would contradict the fact that e is a cut edge. Since e is a cut

edge, the deletion of e from R disconnects the graph into two components with

a and b going to different components. Without loss of generality, assume that

b and c are in different components. Then performing an edge move in the red

graph from e = ab to bc, we have a new set of m red edges that form a connected

and spanning subgraph of G. Essentially, this amounts to coloring e blue and bc
red. Now, since e is blue, we can flip e without affecting the connectivity of R.

Therefore, after one edge move, we can perform the flip. The lemma follows.

Since Lemma 1 uses edge flips in a near-triangulation, and these are the only

edge moves we use, we conclude with the following.

§A cut edge is an edge whose deletion disconnects a graph

13



Corollary 3. Given two connected n-vertex plane graphs G1 = (V1, E1) and G2 =
(V2, E2) embedded in the n × n grid each having m edges, with O(n2) edge moves

and O(n) point moves (all point moves stay within the grid [(−2n,−2n),(3n, 3n)]),

we can transform G1 into G2 while remaining connected throughout the sequence

of moves.

5 Labeled Transformations

In this section, we address the same problems in the labeled setting, that is we

impose an initial mapping prior to the transformation. Specifically, given two

plane graphs G1 = (V1, E1) and G2 = (V2, E2), we define a mapping φ : V1 → V2.

Now perform a sequence of edge and point moves that transforms G1 into a

graph G3 = (V3, E3) that is isomorphic to G2. There is a mapping δ : V1 → V3.

In the unlabeled case, we simply want G3 to be isomorphic to G2. In the labeled

case, in addition, we want for every vertex x ∈ V1, that φ(x) = δ(x).

5.1 Labeled Trees

In the case of trees, the labeled setting is fairly straightforward. We are given

two trees T1 and T2 as well as a mapping φ. Lemmata 5 and 6 imply that both

T1 and T2 can be converted into a canonical tree, which is a path on one row of

the grid. Given the two canonical paths, the only problem is the labeling. We

show a simple way to permute the labels.

Assume without loss of generality that the path is on the X axis with vertices

at points (0, 0), (2, 0), (4, 0), . . . , (2n− 2, 0). Move (0, 0) to (0, 1). With n− 1 edge

moves, convert the path to a star rooted at (0, 1). Now, if we wish to permute

the location of the vertex at (2i, 0) with that of (2j, 0) simply move the vertex

(2j, 0) to (2i + 1, 0), vertex (2i, 0) to (2j, 0) and (2i + 1, 0) to (2i, 0). In this way,

we can sort the labels of the vertices with O(n) edge and point moves.

Theorem 6. Given two trees T1 and T2 embedded on the n×n grid, and a mapping

φ of the vertices of T1 to the vertices of T2, with O(n) point and edge moves, T1 can

be converted to T2 respecting the mapping.

Proof. Follows from the discussion above and Theorem 3.

5.2 Labeled Triangulations and Plane Graphs

In the labeled setting for triangulations and plane graphs, we simply need to

show that given any labeling of the vertices of a canonical triangulation, we

move the vertices to get a different labeling of the vertices. The idea is similar to

the previous section. We will show how to permute the labels on the spine and

how to move a label from the spine to the outerface.

First we show how to permute the vertices on the spine. In order to do

this, we simply need to show how to transpose the position of two vertices. We

first modify the spine of the canonical triangulation such that between every

vertex there is at least one grid point. We also make sure that the triangle of

the outerface has base angles less than π/4. This will ensure that there is a grid

point in every triangle by Observation 2 and make the following moves possible.
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Figure 8: Permuting the Spine of the Canonical Triangulation.

Let a, b, c, d be four consecutive vertices on the spine and we wish to permute

b and c. See Figure 8. With one point move, move c one grid point to the right.

Now e, b, c, d form a convex quadrilateral, so flip edge ec for bd. Next, move b
one grid point to the left and flip edge fb for ca. Now move b to the same height

as c. This gives us the triangulation in the middle of Figure 8. Reverse the steps

to change the order of b and c on the spine. So with O(1) point moves and edge

moves, we can permute the position of two consecutive vertices on the spine.

Lemma 9. With O(n2) point and edge moves, we can go from any permutation of

the spine to any other permutation.

Proof. Follows from the discussion above and the fact that O(n2) transpositions

are sufficient to sort any permutation of n numbers.

Next, it is easy to see that a vertex d can be moved from the spine to the

outerface with one move, as illustrated in Figure 9. Then, with O(n) edge moves

and two point moves, the vertex e that was in the outerface, can be moved to

the bottom of the spine.

a

b

c

d

e f

a

b

c

d

e f

a

b

c

d

e

f

Figure 9: Moving a vertex from the spine to the outerface.

This implies that all of the results on moving plane graphs translate to the

labeled setting at the additional cost of O(n2) point and edge moves.

Theorem 7. Given two n-vertex plane graphs G1 = (V1, E1) and G2 = (V2, E2)
embedded in the n × n grid each having m edges, and a mapping φ of the vertices

of G1 to the vertices of G2, with O(n2) edge moves and O(n2) point moves (all

point moves stay within the grid [(−2n,−2n),(3n, 3n)]), we can transform G1

into G2 while respecting the given mapping and remaining connected throughout

the sequence of moves.
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6 Conclusion

We have shown how point and edge moves suffice to transform any plane graph

to any other plane graph embedded in the plane with a finite number of moves

on a small grid. As for further research, it would be interesting to either reduce

the number moves used or find matching lower bounds in the general setting.
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[6] C. CORTÉS AND A. NAKAMOTO, Diagonal flips in outer-torus triangulations.

Discrete Math., 216(1-3):71–83, 2000.

[7] M. DE BERG, M. VAN KREVELD, M. OVERMARS, AND O. SCHWARZKOPF,

Computational Geometry: Algorithms and Applications. Springer-Verlag,

Berlin, Germany, 2nd edn., 2000.

[8] H. DE FRAYSSEIX, J. PACH, AND R. POLLACK, How to draw a planar graph

on a grid. Combinatorica, 10(1):41–51, 1990.

[9] J. GALTIER, F. HURTADO, M. NOY, S. PÉRENNES, AND J. URRUTIA, Simul-
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