
The Maximin Line Problem with Regional Demand

J. M. Dı́az-Báñez∗ P.A. Ramos† P. Sabariego‡

September 22, 2005

Abstract

Given a family P = {P1, ..., Pm} of m polygonal regions (possibly intersecting)
in the plane, we consider the problem of locating a straight line ` intersecting the
convex hull of P and such that mink d(Pk, `) is maximal. We give an algorithm that
solves the problem in time O((m2 + n log m) log n)) using O(m2 + n) space, where
n is the total number of vertices of P1, ..., Pm. The previous best running time for
this problem was O(n2). We also consider several variants of this problem which
include a three dimensional version – the maximin plane problem –, the weighted
problem and considering measuring distance different to the Euclidean one.

Keywords: Location, Computational Geometry, Linear Facility, Duality.

1 Introduction

The advances in computational geometry have given rise to the development of efficient

algorithms to solve facility location problems. In fact, since its beginning, there has been a

strong interaction between both fields. A proof of this is the fact that one of the problems

which were solved in the origins of computational geometry, computing the minimum

spanning circle, is a geometric interpretation of the best known facility location problem,

the 1-center problem.

This interaction has resulted in a wealth of papers and results of interest to researchers

and practitioners in both fields. In this sense, the surveys [29] and [10] establish the current

state-of-the-art for single and non-single facility location problems, respectively.

∗Corresponding author: Departamento. de Matemática Aplicada II, Escuela Superior de Ingenieros,
Avda. de los Descubrimiento s/n, 41092, Sevilla, SPAIN (dbanez@us.es), partially supported by Project
BFM2003-04062.

†Universidad de Alcalá, SPAIN (pedro.ramos@uah.es), partially supported by Projects TIC2003-
08933-C02-01 and BMF2002-04402-C02-01.

‡Universidad de Cantabria, SPAIN (pilar.sabariego@unican.es), supported in part by Project
BFM2001-1153.

1

Linear facility location has been of great interest both in location theory [25, 26, 33, 3]

and in computational geometry [23, 20, 22]. In this paper we deal with the placement of

an undesirable facility modelled by a line, amidst polygonal regions. The computation of

obnoxious routes has become a topic of increasing interest in recent years. In fact, there

is a natural reason to obtain maximum ‘clearance’ in many applications as the design of

channels for transportation of hazardous materials or paths avoiding obstacles in robotics

[7, 8].

The problem of locating a linear route which maximizes the minimum weighted Eu-

clidean distance to a set of points was first considered in [12]. In this paper, a naive

O(n3)-time algorithm was proposed. However, by using topological sweeping and duality,

the unweighted version of this problem can be solved in O(n2) time and O(n) space [19].

In fact, [19] address the problem of computing a widest empty corridor through a set

of points in the plane, which is precisely an equivalent formulation of the maximin line

problem.

On the other hand, although in the classical facility location problems the existing

facilities are represented as a set of points, there exists a real interest in considering

models involving regions as demand sites. In this way, different real world situations can

be modelled better than the classical versions [11, 27]. In this case, the distance between

the facility and the customer may be calculated as some forme of expected or average

travel distance, for instance, see [5], or the distance to the closest point on the boundary

of the region [4].

The problem of locating an obnoxious line in presence of polygonal regions was con-

sidered in [18, 17]. A brute-force O(n4)-time algorithm was proposed both with Euclidean

and polyhedral norms. However, because the problem is just the empty corridor problem,

an efficient O(n2)-time algorithm can be found in [21] for the unweighted Euclidean case.

Given a set P = {P1, ..., Pm} of m polygonal regions in the plane with a total of n edges,

we wish to compute efficiently a maximin line with respect to P for a general case. Since

in typical applications m ¿ n, we would like to have an algorithm whose performance

depends both on m and n and which is significantly better than the previous one when

m ¿ n. Our results include:

1. An algorithm to compute the unweighted maximin line through P , both for the

Euclidean metric and for a general metric, in O((m2 + n log m) log n) time and

O(m2 + n) space. This result improves the O(n2)-time algorithm of [21] if m ¿ n.

2. The adaptation of the method to solve the general case in which the polygonal

regions are weighted (the weights represent the number of inhabitants, for instance).

This variant of the problem is solved in O(nm2 log m+n log2 n log m) time O(m2+n)

space, which significantly improves the bound O(n4) of [18, 17].

3. An algorithm to solve an extension of the Euclidean unweighted version of the

2

problem to three dimensions, the obnoxious plane problem in presence of polyhedra,

in O(m2n log(m2n)) time and O(m2n) space. This bound improves on the O(n3)

time proposed in [9].

The rest of the paper is organized as follows. In Section 2 we state the problem,

present some geometric preliminares and briefly describe known computational result.

Our general approach is proposed in Section 3 for the Euclidean unweighted case. In

Section 4 the method is adapted to solve a more general model. Section 5 address the

three-dimensional extension of the problem.

2 Overview

We start by introducing some notation and considering a few geometric preliminaries.

A summary of related results is also presented. Let P = {P1, . . . , Pm} be a set of m

polygonal regions in the plane with a total of n vertices. The distance between a polygon

P and a straight line ` is given by the shortest distance based on the distance measure

d, i.e. d(P, `) = minp∈P,x∈` d(p, x), where d(p, x) denotes the Euclidean distance between

points p and x. First, we address the Euclidean case and then we adapt the approach to

solve other versions, including weighted and arbitrary distances.

In the definition of an obnoxious facility location problem, the location of the facility

must be constrained, as otherwise it may be simply removed to infinity. The facility is

normally constrained to go through some sort of bounding region. As in [18], we are

looking for a linear route inside the convex hull of the set P .

The maximin line through P problem can be formalized as follows:

Given a set P of m (possibly intersecting and non-convex) polygons with a total of n

vertices, compute a line ` such that

1. minP∈P d(P, `) is maximal, and

2. ` divides P into two non-empty subsets.

Because the closest point of a polygon P to a line ` not intersecting P is always a

vertex of the convex hull of P , hereafter we consider that polygons are convex and, if this

is not the case, we compute their convex hull as a preliminary step.

The problem can be reformulated equivalently as the computation of the widest empty

corridor through polygonal obstacles [21]. In this geometric formulation, an empty corri-

dor C, through P , is the open region of the plane that is enclosed by two parallel straight

lines intersecting the convex hull of P and such that the region does not intersect any

polygon in P .

3

Let us observe that a given set P may have no empty corridor through it and, if this is

the case, the maximin line problem has no solution. Therefore, decision (deciding whether

or not there exists a line ` through P not intersecting any polygon) and optimization

(finding the farthest one) problems can be independently considered. This fact suggests

trying to compute first a feasible set of lines and then find the optimal solution in that

set.

The following lemma characterizes the solution to our problem. The proof is the same

as in [19], where an analogous result is presented for the case of points instead of polygons.

Lemma 1 Let `∗ be an optimal line and let `1 and `2 be the bounding lines of the corridor

generated by `∗. Then, one of the following conditions must hold:

(a) `1 and `2 contain vertices v1 and v2, and the lines are perpendicular to the line

segment connecting v1 and v2.

(b) There are two vertices on `1 and one vertex on `2 (or the opposite) and, furthermore,

the vertex on `2 is between the vertices on `1 when viewed from a direction orthogonal

to `∗.

This lemma guarantees an O(n3) upper bound on the number of candidate lines for the

two types of corridors. In [18, 17] , a straightforward O(n4)-time algorithm is proposed by

exhaustively considering all possible cases and finding the optimal one. A more efficient

algorithm was proposed in [21].

The main idea is to interpret conditions (a) and (b) of Lemma 1 in the dual plane by

using the duality transformation mapping the non vertical line ` with equation y = mx−n

to its dual point `∗ = (m,n) and the point p = (a, b) to its dual line p∗ : y = ax− b. We

will use two properties of this transformation:

1. it preserves the above-below relation between points and lines: point p lies above

line ` iff point `∗ lies above line p∗.

2. parallel lines are mapped to points with the same abscissa and, therefore, a slab is

mapped to a vertical segment.

Using these properties, it follows that if pq is a segment, the dual of the set of lines

intersecting pq is the double wedge defined by lines p∗ and q∗ and not containing the

vertical line.

Let H be the set of lines dual to vertices of P and let A(H) be the arrangement in the

plane induced by H. The properties of the duality transform can be used to characterize

in A(H) the sets of type-(a) and type-(b) corridors of Lemma 1.

A corridor C with bounding lines `1 and `2 is represented in the dual plane by the

vertical segment with endpoints `∗1 and `∗2. If C is an type-(a) empty corridor, then C

4

`

`
∗

P̄
∗

P

Figure 1: Dual interpretation of a free-collision line.

corresponds to a vertical segment inside a face of A(H) that connects a vertex and a edge

of that cell. Similarly, a type-(b) empty corridor corresponds to a vertical segment inside

a cell connecting an edge with an edge. In this case, the uniqueness of the segment follows

from the perpendicularity condition.

Furthermore, the set of lines intersecting a given set of edges of P corresponds to a

face of A(H) and, in particular, lines avoiding all the polygons of P correspond to some

set of faces of the arrangement. As observed in [21], the topological sweep of [13] can be

adapted to compute such set of faces and therefore we have:

Theorem 1 ([21]) An optimal maximin line for the set of polygons P can be computed

in O(n2) time and O(n) space, where n is the total number of vertices of the polygons.

3 Our approach

In this section we show that if m is small compared to n it is more convenient to avoid

the construction of the whole arrangement of lines dual to vertices of P . We show that

the set of lines not intersecting any polygon in P has complexity O(m2 + n) and can be

constructed in time O((m2 + n log m) log n). Therefore, if m = o(n), the time complexity

is improved perhaps with some extra memory cost, while if m = O(
√

n) time complexity

is improved with the same space complexity.

Given a polygon P ∈ P , let us denote by UP and LP the dual sets of the lines above P

and bellow P , respectively. It is well known that UP and LP are disjoint convex polygons

(one unbounded from above, the other unbounded from below), as shown in Figure 1.

Then, P̄ ∗ = UP ∪ LP is the set of points dual to the lines not intersecting P . A vertex of

P̄ ∗ is the dual of a line supporting an edge of P .

We are interested in the set A∗ =
⋂

P∈P P̄ ∗ because a point `∗ ∈ A∗ corresponds, in

primal space, to a line ` that does not intersect any polygon in P .

The complexity of this set is defined as the sum of its vertices, edges and faces and

is proportional to the number of vertices. A vertex v of A∗ is either a vertex of some

polygonal region P̄ ∗ or a point dual to a common tangent of two polygons in P that does

not intersect any other polygon. Clearly, there are at most n vertices of the first type.

5

In [1] it is shown that the number of vertices of the second type is O(m2 + n) using an

argument similar to the following one, that we include here for the sake of completeness.

Let Q1, Q2, . . . , Qt, where t ≤ m, be the connected components of
⋃

P∈P P . A vertex of

the second type corresponds either to a line tangent to some Qi – there are O(n) of those

– or to a common tangent of Qi and Qj. Because two disjoint polygons have at most four

common tangents, we conclude that the number of vertices of the second type is O(m2+n).

In the same paper it is shown that a simple divide-and-conquer algorithm which performs

the conquer approach doing a sweep computes the set A∗ in time O((m2 +n log m) log n).

We summarize this discussion in the following result:

Lemma 2 A∗ has complexity O(m2+n) and can be computed in time O((m2+n log m) log n).

Once A∗ is computed, the decision problem reduces to check whether it has some face

which correspond to a line having polygons on both sides, i. e. a face of the arrangement

which has edges both above and bellow it. The optimization problem can be solved

visiting all the faces of A∗: within each face, we have to compute the width of the slabs

which correspond in the dual plane to vertical segments connecting either two edges of

A∗ (type(a)-corridor) or a vertex and an edge (type(b)-corridor), as defined in Lemma 1.

Clearly, this can be done in time proportional to the size of the face performing a sweep

of the face. Therefore, we get the following result:

Theorem 2 Let P be a set of m convex polygons with a total of n vertices. An optimal

maximin line trough P can be found in time O((m2 + n log m) log n) using O(m2 + n)

space.

The approach in this section can be applied to the case when the obstacles are convex

sets with constant description complexity, i. e. whose boundaries are algebraic curves

with degree bounded by a certain constant. Again, we use duality and observe that the

set of lines intersecting a convex set P corresponds in dual plane to the region between

two convex curves, U and L, which are dual to the set of upper and lower tangents of P ,

respectively (see Figure 2). Therefore, the set of lines avoiding a family of convex sets

P1, P2, . . . , Pm corresponds to a set of faces in the arrangement formed by those curves.

The crucial parameter which bounds the complexity of the arrangement is the number

of intersections between any two curves. If every two curves intersect in at most one

point, then the complexity of the arrangement is O(m2) and can be constructed within

the same asymptotic time (see [32]). Once the arrangement is constructed, the problem of

computing the widest empty corridor can be easily solved. We observe that the condition

for the number of intersections corresponds in primal plane to the fact that every two

convex sets Pi and Pj have at most one common upper tangent, one common lower

tangent and two inner tangents and is satisfied in a variety of situations, for instance, if

the convex sets are pairwise disjoint or if we are dealing with a family of arbitrary disks.

6

`∗
1

`∗
2

U1

U2

L1

L2
C1

`1

`2

C2

`3

`∗
3

Figure 2: Duality for convex sets P1 and P2.

4 The weighted maximin line problem with arbitrary

norms

In this section we generalize the problem both by considering distances different from the

Euclidean and by adding weights to the sites. Facility location models usually consider

given weights associated to the input, representing the importance of the existing facilities.

Also, non-Euclidean norms to measure distances have been widely used in the literature

[16, 33]. Let us start by introducing some notation that we borrow from [33].

Let P = {P1, . . . , Pm} be the family of convex polygonal regions and let wk be the

weight associated to the polygon Pk. Let B be a convex, compact, centrally symmetric

set in the plane. The norm with unit ball B is defined by γB(x) := min{|λ| : x ∈ λB}.
The induced distance between two points x and y is denoted dB(x, y) := γB(x − y). If

A and B are two closed subsets in R2, then the distance between A and B is defined as

dB(A,B) := mina∈A,b∈B dB(a, b).

We consider both the decision and the optimization versions of the weighted max-

imin line problem with arbitrary norm. If we denote by LP the set of lines in the plane

intersecting CH(P), the problems can be defined, respectively, as follows:

[Dec] Given δ > 0, decide whether there exists a line ` ∈ LP such that min
Pk∈P

1

wk

dB(Pk, `) ≥
δ

[Opt] Compute max
`∈LP

min
Pk∈P

1

wk

dB(Pk, `)

Our plan is to give an efficient solution to the decision problem and then applying

parametric search in order to solve the optimization problem. First we recall the concept

of Minkowski sum: given two sets A,B ⊂ R2, the Minkowski sum of A and B is defined

as

A⊕B = {a + b | a ∈ A, b ∈ B},

7

P1 P1

`
`

P2 P2

P3
P3

P4

P4

P5 P5

Figure 3: Decision problem interpreted via Minkowski sums.

where a and b are added up because they are interpreted as vectors once an origin has

been fixed. Because

1

wk

dB(Pk, `) ≥ δ ⇔ ` ∩ (Pk ⊕ ωkδB) = ∅ (1)

the decision problem can be formulated in the following way: given δ > 0, decide whether

there exists a line ` ∈ LP that does not intersect the sets Pi ⊕ ωiδB, for i = 1, . . . , m (see

Figure 3).

At this point we have to make some assumptions on the ball B that allows us to

perform computations. For instance, we can assume that B is a convex polygon with a

constant number of edges1 or an algebraic curve with constant description complexity.

In the later case, we assume that our model of computation is powerful enough to make

the required operations (essentially, computing the common tangents of two homothetic

copies of B) in constant time.

We can solve the decision problem applying the same technique that was used to

solve the Euclidean version of the problem. We use duality and observe that the set of

lines intersecting a convex set Pi ⊕ ωiδB corresponds in dual plane to the region between

two convex curves, Ui and Li, which are dual to the set of upper and lower tangents

of Pi ⊕ ωiδB, respectively. Therefore, the set of lines which are at weighted distance at

least δ from P1, P2, . . . , Pm corresponds to a set of faces in the arrangement formed by

those curves. Using exactly the same arguments as in Lemma 2 it can be shown that

the arrangement formed by the curves Ui and Li has complexity O(m2 + n) and can be

computed in time O((m2 + n log m) log n). Therefore, we have:

Theorem 3 Let P = {P1, . . . , Pm} be a set of convex polygons with a total of n vertices

and let ω1, . . . , ωm be the corresponding weights. Let dB be the distance defined by the unit

ball B. The problem [Dec] can be solved in time O((m2 + n log m) log n) using O(m2 + n)

space.

1If the number of edges is not a constant, the same algorithm works, but the complexity is related to
the number of edges of B

8

4.1 The optimization problem

Parametric search is a well known technique in geometric optimization which originated

in [24]. It can be used to solve optimization problems which are monotone with respect

to a given parameter δ: if the answer to the corresponding decision problem is positive

for a given δ1, then it is also positive for every δ2 < δ1. Therefore, if we denote by δ∗ the

value of the parameter associated to the optimal solution, we know that if the answer to

the decision problem is positive for δ1 then δ∗ ≥ δ1, while if it is negative, then δ∗ < δ1.

The main idea behind parametric search is trying to do binary search on the parameter

δ; of course, we cannot do binary search on a real parameter, instead we try to reduce

the search to a discrete set containing the value δ∗ as follows: suppose that we have a

sequential algorithm D solving the decision problem and that we run the algorithm using

as input the (unknown) value δ∗. If the decisions made by the algorithm depend only

on the sign of a polynomial P (δ), it becomes clear how to proceed: if δ1, . . . , δk are the

roots of P (δ), we run D for each of the roots and, in this way, we find that either δ∗ < δ1,

δ∗ > δk, δ∗ ∈ (δi, δi+1) or δ∗ = δi for some i = 1, . . . , k − 1. In the last case we are done,

while in the rest we can proceed with D for δ∗ because we know the sign of P (δ∗).

The approach outlined in the previous paragraph does not give a good complexity, but

it can be improved if we have a parallel algorithm for the decision problem. The main idea

is to use the parallel algorithm for collecting batches of roots of P (δ) that are independent

– in the sense that we can perform one of them without knowing the result of the others

– and do binary search on them. In this way, if the parallel algorithm solves the problem

in Tp steps using Q processors and the sequential algorithm has complexity Ts, the final

complexity of the optimization method is O(QTp +TpTs log Q). The interested reader can

find both theoretically oriented and applied oriented expositions of the parametric search

technique in [2, 31].

Perhaps the main difficulty of the parametric search technique is that we need a

parallel algorithm for the generic version of the decision problem, which is not always

easy. Nevertheless, it can be observed that it is not necessary that the generic algorithm

solves the problem under consideration: all we need is that the output of the generic

algorithm changes combinatorially at δ∗. Actually, in quite some cases sorting can play

the role of the generic algorithm and, in these cases, we can use one of the parallel sorting

algorithms. It has been pointed out in [28] that Cole’s algorithm presented in [6] may be

specially appropriated in practice because it has good asymptotic complexity and small

constants, and that quicksort can also give good results in practice. Let us see why sorting

can also be used for our problem.

Let us consider P δ
i = Pi⊕ δωiB. The (curved) polygon P δ

i is made up of arcs of copies

of the unit ball B centered at the vertices of Pi and tangents between them. If u, v are

vertices of Pi, we denote by uδ and by vδ, respectively, the corresponding arcs of P δ
i . As δ

increases, the two inner tangents to P δ
i and P δ

j rotate in opposite directions. We denote

9

P1

P2

P3

b)

τ
+

12 = τ
−

23

α
+

12 = α
−

23

Pi
Pj

α
+

ij
α
−

ij

a)

τ
−

ij

τ
+

ij

Figure 4: Reduction to sorting inner tangents.

by τ+
ij (δ) the inner tangent to P δ

i and P δ
j that rotates counterclockwise and by τ−ij (δ)

the inner tangent that rotates clockwise. Finally, α+
ij(δ) and α−ij(δ) are, respectively, the

angles determined by the inner tangents with the OX axis (see Figure 4.a).

The key observation is that, if we sort the O(m2) angles α+
ij(δ) and α−ij(δ), the order

changes in the candidate solutions to the maximin line problem. Actually, for candidates

of type a) such that the vertices belong to polygons Pi and Pj we have that α+
ij(δ

∗) =

α−ij(δ
∗) while for candidates of type b) we have that α+

ij(δ
∗) = α−jk(δ

∗) for a suitable

labeling of the polygons (see Figure 4.b).

There is still one last caveat for using the generic sorting algorithm in the parametric

search process. When the generic algorithm makes a comparison between α±ij(δ
∗) and

α±kl(δ
∗), the result does not depend on the sign of a polynomial, but on the angle defined

by the inner tangents to P δ∗
i and P δ∗

j and to P δ∗
k and P δ∗

l . Therefore, in order to resolve

the comparison, we have to compute the values of δ for which the angle is the same and

afterwards run the sequential algorithm for some of those values of δ. In the following

results we deal with this problem and give an upper bound on the number of such values.

Lemma 3 Let τ±ij (δ) be the set of inner tangents to the families of polygons P δ
i and P δ

j .

The set τ±ij (δ) has complexity O(ni +nj) and can be computed within the same asymptotic

time.

Proof: We observe that the inner tangents to Pi and Pj, i.e. τ±ij (0), can be computed

in time O(log ni + log nj) (see [30]). Let us assume that we label the vertices of Pi and

Pj counterclockwise and in such a way that τ+
ij (0) is tangent to Pi and Pj at vertices u1

and v1, respectively (see Figure 5). Now, as δ increases, τ+
ij (δ) is tangent to two copies of

the unit ball B centered at u1 and v1 and scaled according with ωi and ωj, the weights

corresponding to the polygons. We recall that, in our model of computation, this set

of tangents can be computed and described in constant time and we refer to it as an

elementary arc of the curve α+
ij(δ). This elementary arc is completed either when the

10

Pi Pj

τ
+

ij (0)

u1

v1

τ
+

ij (δ1)

v2

u2

Figure 5: Computing τ+
ij (δ).

tangent to P δ
j at the edge vδ

1v
δ
2 is also tangent to P δ

i (at uδ
1) or when the tangent to P δ

i at

the edge uδ
1u

δ
2 is also tangent to P δ

j (at vδ
1).

In this way, we can compute elementary arcs describing τ+
ij (δ) until we reach the value

of δ for which polygons P δ
i and P δ

j are tangent. Clearly, during this process we always

move forward on the boundary of the polygons, namely, counterclockwise for τ+
ij and

clockwise for τ−ij and thus the total complexity is O(ni + nj). 2

Given a point ui with associated weight ωi, consider uδ
i = ui ⊕ δωiB. In the following

lemma we characterize the common tangents to a pair of such balls.

Lemma 4 There exist two points min and mout on the line defined by ui and uj such that

for every δ > 0 the inner and outer tangents to uδ
i and uδ

j pass through, respectively, min

and mout. Furthermore, for these points it holds

d(ui,min)

d(uj,min)
=

d(ui,mout)

d(uj,mout)
=

ωi

ωj

.

Points ui, uj, min, mout are said to form an Harmonic system of points (see [15]).

Proof: Let min be the intersection point between an inner tangent and the line passing

through ui and uj and let αi and αj the tangency points (see Figure 6). Because B is

centrally symmetric, segments uiαi and ujαj are parallel and, therefore, triangles uiαimin

and ujαjmin are similar. Therefore,

d(αi,min)

d(αj,min)
=

d(αi, ui)

d(αj, uj)
=

δωi

δωj

For the outer tangents and mout the argument is completely similar. 2

It is worth noticing that point min is also known as the weighted midpoint of ui and

uj.

11

αi

βi

αj

βj

ui ⊕ δωiB

uj ⊕ δωjB

ui uj

min mout

Figure 6: Illustration for the proof of Lemma 4.

We need to study the set of solutions of the equation α±ij(δ) = α±kl(δ). Clearly, α+
ij(δ)

and α−kl(δ) intersect in at most one point, because the former one is an increasing function

while the later is a decreasing function, and the same is true for α−ij(δ) and α+
kl(δ). In the

next result we study the set of solutions of the equation α+
ij(δ) = α+

kl(δ) (the situation for

the clockwise rotating tangents is identical).

Lemma 5 Let α+
ij(δ) and α+

kl(δ) be elementary arcs describing the counterclockwise rotat-

ing inner tangents to uδ
i and uδ

j and to uδ
k and uδ

l , respectively. Let us assume that at least

one of the indices k, l is different from i and j. If the equation α+
ij(δ) = α+

kl(δ) has more

than one solution, then the curves α+
ij(δ) and α+

kl(δ) are equal whenever both are defined.

Proof: Without loss of generality, we can assume that k is different from i and j. Fur-

thermore, according to Lemma 4, all common inner tangents to uδ
i and uδ

j and to uδ
k and

uδ
l pass through, respectively, points that we denote by mij and mkl.

Let us assume that α+
ij and α+

kl intersect twice. In Figure 7 the angles for which the

common tangents are parallel are 0 and γ. Let αh,βh, for h = 1, 2, be the tangency

points with balls uδ
i and uδ

k (see Figure 7). We observe that the triangles α1α2ui and

β1β2uk are similar and, therefore, the segments α1α2 and β1β2 are parallel and such that
d(α1,α2)
d(β1,β2)

= ωi

ωk
. Because the triangles α1α2mij and β1β2mkl are also similar, it follows that

d(α1,mij)

d(β1,mkl)
= ωi

ωk
and, therefore, triangles uiα1mij and ukβ1mkl are similar too. But then

the edges uimij and ukmkl are parallel and their lengths are in the proportion ωi

ωk
, which

implies that curves α+
ij(δ) and α+

kl(δ) are equal whenever both are defined. 2

Now we can give a bound on the number of solutions in the overall process which is

crucial for the performance of the parametric search technique.

Lemma 6 The total number of solutions of O(m2) equations of the form α±ij(δ) = α±kl(δ)

is O(nm2) and can be computed within the same asymptotic time.

Proof: From Lemma 3 it follows that α±ij(δ) has complexity O(ni + nj) and can be com-

puted within the same asymptotic time. Furthermore, from Lemma 5 we know that the

12

uδ
i

uδ
j

uδ
k

mij

mkl

α1

α2

β1

β2

uk

ui

γ

γ

Figure 7: Illustration for the proof of Lemma 5

equations α±ij(δ) = α±kl(δ) have at most O(ni + nj + nk + nl) = O(n) solutions. Clearly,

such solutions can be computed in the same asymptotic time using an standard sweep

approach. 2

We are now ready to describe the final procedure: we order the O(m2) inner tangents

in O(log m) steps, and perform O(m2) comparisons in each step. Lemma 6 guarantees

that the total number of solutions to the equations α±ij(δ) = α±kl(δ) performed in each step

is O(nm2) and, therefore, the complexity of the algorithm is O((nm2+Ts log(nm2)) log m),

where Ts = O((m2 + n log m) log n). Putting all this together, we have:

Theorem 4 Let P = {P1, . . . , Pm} be a set of convex polygons with a total of n vertices

and let ωi be the corresponding weights. Let dB be the distance defined by the unit ball B.

The problem [Opt] can be solved in time O((n log m(m2 + log2 n)) using O(m2 + n) space.

It may be argued that the algorithm is too involved and that the complexity is too

high in order to be useful in practice. Nevertheless, we observe that the main contribution

to the complexity bound comes from Lemma 6 and the fact that we do not make any

assumptions on the relative size of the polygons. The complexity bound is much better

in a variety of particular cases. For instance, if we take m as a constant, i.e., if we have

a constant number of polygons, then we get an algorithm which complexity is close to

linear. Perhaps more importantly, if we have a set of polygons with similar size we get

the following:

Corollary 1 Let P = {P1, . . . , Pm} be a set of convex polygons with a total of n vertices,

let ni be the number of vertices of Pi and assume that m = Θ(
√

n) and ni = O(
√

n) for

i = 1, . . . , m. Then, the problem [Opt] can be solved in time O(n3/2 log n) using O(n)

space.

Proof: It is enough to observe that if m = Θ(
√

n) and ni = O(
√

n) for i = 1, . . . , m, then

the bound of Lemma 6 is O(n3/2). 2

13

5 The three-dimensional scene

In this section we deal with the problem of computing the plane which maximizes the

minimum distance to a set of polyhedra in R3.

Given a set P = {P1, ..., Pm} of m polyhedra in R3 with a total of n vertices, we want

to find a plane π such that:

• π ∩ CH(P) 6= ∅.

• mini d(Pi, π) is maximum.

This problem is named as the obnoxious plane problem in [9], where it is solved in O(n3)

time and O(n2) space. The problem is equivalent to finding an empty region bounded

by two parallel planes as wide as possible and defining a nontrivial partition in the set of

polyhedra, that we refer as the widest empty slab problem. Let S be the set of vertices of

the objects in P .

We state a necessary condition for slab optimality in arbitrary dimension. We say

that a hyperplane π strictly separates two sets of points if each of the sets is contained in

one of the open halfspaces defined by π.

Theorem 5 Let π∗ be a solution to an instance of the obnoxious hyperplane problem and

let π1 and π2 be the bounding hyperplanes of the slab generated by π∗. Then, the sets

S1 = S ∩ π1 and S2 = S ∩ π2 cannot be strictly separated by a hyperplane orthogonal to

π∗.

Proof: Let us assume that S1 = {pi}i∈I and S2 = {qj}j∈J . We denote by ~n the unitary

vector orthogonal to π∗. Then, the distance between the parallel planes π1 and π2 is

∆ = |~n · ~piqj|. First, observe that if S1 and S2 can be strictly separated by a hyperplane h

orthogonal to π∗, then the unitary vector normal to h, denoted by ~v, can be chosen such

that

min
pi∈S1,qj∈S2

~v · ~piqj = k > 0.

Now we consider an empty slab orthogonal to ~nε = ~n + ε~v. The width of the slab is

∆(ε) = min
pi∈S1,qj∈S2

~nε · ~piqj

‖~nε‖ = min
pi∈S1,qj∈S2

∆ + ε~v · ~piqj

1 + ε2
=

∆ + kε

1 + ε2
.

Because ∆(0) = ∆ and ∆′(0) = k > 0, we can guarantee that ∆(ε) > ∆ for ε > 0 small

enough. 2

As a consequence of the preceding Theorem we can restrict our search to slabs C that

satisfy one of the four following conditions (see Figure 8) as in [9].

14

r

r r

r r r

r

r

r r

rr r¡
¡

¡ ¡
¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡

¡
¡

¡ ¡
¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡ ¡

¡
¡

....................................

....................................
.................

.................

....................................

(b) C21 (c) C31 (d) C22(a) C11

π1

π2 π2 π2 π2

π1 π1 π1

Figure 8: Types of candidate slabs according to Theorem 5.

(a) Each of π1 and π2 contains exactly one point of S, p1 and p2 respectively, such that

p2 − p1 is orthogonal to π∗.

(b) There are points S1 = {p11, . . . , p1h} ⊂ S on π1 and S2 = {p21, . . . , p2k} ⊂ S on π2

such that h ≥ 2, k ≥ 1 and S1 ∪ S2 lie on a common plane τ that is orthogonal to

π∗.

(c) There are points S1 = {p11, . . . , p1h} ⊂ S on π1 and S2 = {p21, . . . , p2k} ⊂ S on π2

such that h ≥ 3, k ≥ 1, S1 are not collinear, and S1 ∪ S2 are not coplanar.

(d) There are points S1 = {p11, . . . , p1h} ⊂ S on π1 and S2 = {p21, . . . , p2k} ⊂ S on

π2 such that h ≥ 2, k ≥ 2, S1 are collinear, S2 are collinear, and S1 ∪ S2 are not

coplanar.

Following the same approach as in the two dimensional case, we solve the problem

by exploring efficiently only the set of planes avoiding P . We first give a bound for the

combinatorial complexity of this set and show how it can be computed.

Let D be the transformation which maps a point p = (a, b, c) to the plane D(p) : z =

ax + by − c in the dual space, and maps a non-vertical plane π : z = mx + ny − d to the

point D(π) = (m,n, d) in the dual space. Given a polyhedron Pi, we denote by Ai the set

of planes avoiding Pi and by A∗
i the set of points dual to planes in Ai.

Theorem 6 Let P = {P1, ..., Pm} be a set of m polyhedra with a total of n vertices. The

set of planes avoiding P has complexity O(m2n) and can be computed in time O(m2n log(m2n)).

Proof: We want to argue that the number of vertices of A = ∩m
i=1A

∗
i is O(m2n). The

vertices of A correspond to planes passing through three vertices of P and can be classified

into three different types:

1. planes containing three vertices of a polyhedron (therefore, containing a face of its

convex hull),

2. planes passing through an edge of a polyhedron and a vertex of another polyhedron,

15

3. planes passing through three vertices of three different polyhedra.

The number of vertices of the first type is clearly O(n) and, for the second type, we observe

that there are at most two planes tangent to a given edge and a given polyhedron and,

therefore, the number of those vertices is O(mn). Finally, for the third type of vertices,

we claim that the number of planes tangent to polyhedra Pi, Pj and Pk, with ni, nj and

nk vertices respectively, is O(ni + nj + nk). In order to prove the claim, observe that

A∗
i is the union of two unbounded convex polyhedra. Therefore, A∗

i ∩ A∗
j ∩ A∗

k can be

described as the union of at most eight disjoint sets, each of which is the intersection of

three convex polyhedra and has complexity O(ni + nj + nk). The first part of the proof

is finished because ∑

i 6=j 6=k

O(ni + nj + nk) = O(m2n)

In order to compute A we use a divide and conquer approach. Assume that we partition

P into two sets of dm
2
e and bm

2
c polyhedra, denoted R and B, with n vertices in total.

Let Ar and Ab denote, respectively, the sets of points dual to planes avoiding R and

B, respectively. The crux of the method is observing that the merge step reduces to

computing the intersection of Ar = ∪k
i=1Ri and Ab = ∪l

j=1Bj, where Ri and Bj are

convex polyhedra and the total complexity of Ar and Ab is O(m2n).

We compute the intersection of R and B using a space sweeping approach. It is

clear that the intersection can be easily computed if we are able to maintain the planar

subdivision generated in the sweep plane by one of the sets, say R, and perform point

location in such subdivision when we encounter a new vertex of B. These operations

can be done efficiently by using the dynamic point location structure of Goodrich and

Tamassia [14] which can manage monotone subdivisions (in our case, the subdivision is

convex) and takes O(log n) per update and O(log2 n) per point location query, where n is

the total size of the subdivision. Because the total size of R and B is O(m2n), it follows

that the intersection can be computed in time O(m2n log(m2n)). Therefore, if we denote

by T (m,n) the time required by the whole algorithm, we obtain the recursive formula

T (m,n) = T (m/2, n1) + T (m/2, n− n1) + O(m2n log(m2n))

which solves to T (m,n) = O(m2n log(m2n)). 2

We now describe how to use the arrangement A = ∩m
i=1A

∗
i in order to solve the

problem. As shown is the two dimensional case, the idea is to solve the optimization

problem visiting all cells c in A and identifying the candidate slabs associated with c. By

using the properties of the duality transform we look at open vertical segments whose

endpoints lie on the boundary of each cell. We have to examine all the vertical segments

inside a cell that correspond with candidates of type C11, C21, C31, C22 as illustrated in

Figure 8.

16

When leaving a cell c, we test every face-face, edge-face, vertex-face and edge-edge pair

of c in order to identify and compute the width of all pairs that are vertically aligned,

i.e., the widths of the candidate slabs in the primal space.

A detailed description of the detection of candidates within a cell in a three-dimensional

arrangement is given in [9]. In each cell, each candidate can be processed in O(1) amor-

tized time. At this point, we should note that candidates type C11 and C21 differ from

candidates C31 and C22. In fact, the number of vertical segments associated with a face-

face or edge-face pair is not finite. However, the orthogonality condition of the former

can be used to identify those types of candidates in amortized O(1) time per cell.

As a consequence of the above description, the overall time we need to obtain all the

candidates in our arrangement and compute the optimal one is proportional to the size

of the arrangement, and we have established the following result:

Theorem 7 An obnoxious plane through a set of m polyhedral objects in R3 with a total

of n vertices can be computed in O(m2n log(m2n)) time and O(m2n) space.

Acknowledgments

The authors wish to thank Boris Aronov for his help in the proof of Theorem 6.

References

[1] P.K. Agarwal, and M. Sharir. Ray shooting Amidst Polygons in 2D, Journal of Al-

gorithms, 21, (1996), 508–519.

[2] P.K. Agarwal, and M. Sharir. Efficient algorithms for geometric optimization, ACM

Computing Surveys, 30, (1998), 412–458.

[3] J. Brimbeg , H. Juel, A. Schöbel. Linear facility location in three dimensions - models

and solution methods. Operations Research, 50(6) (2002) 1050-1057.

[4] J. Brimberg, and G. O. Wesolowsky. Locating facilities by minimax relative to closest

points of demand areas. Computers & Operations Research, 29:625–636, 2002.

[5] E. Carrizosa, M. Muñoz-Márquez, and J. Puerto. The Weber problem with regional

demand. European Journal of Operational Research, 104(2):358–365, 1998.

[6] R. Cole. Parallel merge sort. SIAM J. on Computing 17: 770–785, 1988.

17

[7] J.M. Dı́az-Báñez, F. Gómez, G. Toussaint. Computing shortest paths for transporta-

tion of hazardous materials in continuous spaces. Journal of Food Engineering, 70,

2005, pp. 293–298.

[8] J. M. Dı́az-Báñez, F. Hurtado, Computing obnoxious 1-corner polygonal chains,

Computers & Operations Research, 33, 2005.

[9] J. M. Dı́az-Báñez, M. López, and J. A. Sellarès. Locating an obnoxious plane Euro-

pean Journal of Operational Research, in press, 2005.

[10] J. M. Dı́az-Báñez, J. A. Mesa, and A. Shöbel. Continuous location of dimensional

structures, European Journal of Operational Research, 152, 2004, 22-44.

[11] Z. Drezner. Facility Location: A Survey of Applications and Methods. Editor Zvi

Drezner, Springer, 1995.

[12] Z. Drezner, and G.O. Wesolowsky. Location of an obnoxious route, J. Operational

Research Society, 40, 1989. 1011–1018.

[13] H. Edelsbrunner, and L. Guibas. Topologically sweeping an arrangement. Journal of

Computer and System Sciences 38 165-194, 1989.

[14] M. T. Goodrich, and R. Tamassia. Dynamic trees and dynamic point location. SIAM

Journal on Computing 28 612-636, 1998.

[15] G. H. Hardy. A Course of Pure Mathematics. Cambridge University Press, pp. 99–

106, 1967.

[16] H. W. Hamacher, and S. Nickel. Multicriteria planar location problems. European

Journal Of Operational Research 94 66-86, 1996.

[17] Y. Hinojosa. Some problems in Location Theory. Ph.D. Thesis, University of Seville,

2000.

[18] Y. Hinojosa, and J. Puerto. The Polyhedral Norm Approach to the Problem of

Locating Obnoxious Routes, Studies in Locational Analysis, 12, (1999), 49–65.

[19] M. Houle, and A. Maciel, Finding the widest empty corridor through a set of points,

In G.T. Toussaint, editor Snapshots of computational and discrete geometry, pp

210-213. TR SOCS-88.11, dept of Computer Science, McGill University, Montreal,

Canada, 1988.

[20] M. Houle, and G. T. Toussaint. Computing the width of a set, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 10, (1988), 760–765.

18

[21] J. Janardan, and F. P. Preparata. ”Widest-corridor problems”, Nordic Journal of

Computing, 1, pp 231-245, 1994.

[22] N. M. Korneenko, and H. Martini. Hyperplane Approximation and Related Topics.

In New Trends in Discrete and Computational Geometry. János Pach Ed., chapter 6,

pages 135–162. Springer-Verlag, New York, 1993.

[23] D. T. Lee, and Y. F. Wu. Geometric Complexity of Some Location Problems. Algo-

rithmica, 1, (1986), 193–211.

[24] N. Megiddo. Applying parallel computation algorithms in the design of serial algo-

rithms. J. ACM, 30, pp. 852-865, 1983.

[25] J. G. Morris, and J. P. Norback. A simple approach to linear facility location.

Transportation Science, vol 14, 1, 1980, 1–8.

[26] J. G. Morris, and J. P. Norback. Linear Facility Location - Solving Extensions on the

Basic Problems. European Journal of Operational Research, 12, 1983, 90–94.

[27] S. Nickel, J. Puerto, and A.M. Rodriguez-Ch́ıa. An approach to Location Models

Involving Sets as Existing Facilities Mathematics of Operational Research, 28, 2003,

693–715.

[28] R. v. Oostrum, and R. C. Veltkamp. Parametric search made practical, Computa-

tional Geometry, 28, pp. 75-88, 2004.

[29] J. M. Robert, and G. T. Toussaint. Computational Geometry and facility location.

Technical Report SOCS 90.20, McGill Univ., Montreal, PQ, 1990.

[30] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Inf. Pro-

cessing Letters (23), pp. 71-76, 1986.

[31] J. Salowe Parametric search. In Handbook of Discrete and Computational Geometry.

J. E. Goodman and J. O’Rourke (Eds). pp. 683-698, 1997.

[32] M. Sharir, and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric

Applications, Cambridge-University Press, 1995.

[33] A. Shöbel. Locating least-distant lines in the plane. European Journal Of Operational

Research, 106, (1998), 152-159.

19

