
Multi-VMap: a Multi-Scale Model for Vector
Maps

R. Viaña1, P. Magillo2, E. Puppo2 and P.A. Ramos1

1 Department of Mathematics, University of Alcala, Spain
2 Department of Computer Science, University of Genova, Italy

Summary. Multi-VMap is a compact framework from which plane graphs repre-
senting geographic maps at different levels of detail can be extracted. Its main feature
is that the scale of the extracted map can be variable through its domain, while each
entity maintains consistent combinatorial relations with the rest of entities repre-
sented in the map. The model is based on a set of operators, called updates, which
modify the level of detail in a small portion of a map. The set of updates is par-
tially ordered, and can therefore be represented as a Directed Acyclic Graph, which
defines our multi-scale structure. An algorithm to extract a map at the required
resolution is proposed, and a lower bound for the number of different maps which
can be extracted from the model is given. The model supports map data processing
operations (e.g., querying), as well as progressive and selective transmission of maps
over a network.

1 Introduction

In a computational environment, geographic maps admit two main types of
representation: raster and vector [24, 52]. Raster maps are formed by discrete
elements, or pixels, each of which is defined by its spatial position and has
associated a set of attributes. A vector map, on the contrary, is defined in
terms of the structured elements composing it, called entities. A plane vector
map is formed by a set of points, lines and regions, characterized by their
topological relations (representing the linking of entities), geometry, and se-
mantics. Both types of map description, as well as the hybrid one, have been
broadly employed over the last decades. None of them has proved to be more
appropriate than the other one in absolute terms, the suitability of which one
to adopt depending on the particular application. In this paper, we will follow
a vector approach to develop an entity-based multiresolution model.

The advantages of having a multiresolution model of any description of an
object are well known: for some applications a representation of the object
in its full complexity is not required. The bigger the resolution the bigger
the space necessary to store the model and the time complexity to process it.

2 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

Therefore, it is quite inefficient to work at full resolution if this is not necessary.
A multi-scale model is a compact structure relating representations of the
same geographic map at different scales, where by scale we mean level of detail
of the entities forming in the map. Multi-scale modelling has a fundamental
importance in allowing for map storage, processing and visualization with an
acceptable trade-off between cost and performance, in case of very large data
sets. In fact, maps extracted according to application requirements will be
definitely smaller than the original map at full resolution. The multi-scale
representation for maps developed in this work also allows the transmission
of maps over a network, both progressively (i.e. sending a coarse map first,
followed by details to incrementally improve the level of detail), and selectively
(i.e. concentrating the transmission of details in some parts of the map).

It is well known that the structure of 2-D vector maps can be suitably
represented by means of plane graphs (properly speaking, plane pseudographs,
allowing multiple lines and self-loops). Given a plane graph G, the geometry
of G is defined by the coordinates of its vertices and the geometry of its
edges, whereas the combinatorics (also called topology) of G is given by the
incidence relations, which reflect how the entities in G are linked. Geometry
and combinatorics can best be treated by means of different mathematical
tools. The combinatorial structure of plane graphs is mathematically modelled
by Abstract Cell Complexes. This algebraic structure can capture the whole
topological nature of maps, independently of their geometry [10, 26, 29]. In
this work only the combinatorial aspects of maps are considered, the model
developed being fully combinatorial.

Two maps of the same area at different resolutions must be topologically
consistent, i.e., objects that appear in both maps must maintain compati-
ble spatial relationships. For instance, objects that meet before simplification
cannot possibly be disjoint in the simplified map [31]. This might seem contra-
dictory with traditional cartographic generalization principles. However, we
believe that the digital management of spatial data must not necessarily be
ruled by ad-hoc cartographic rules, based on practical experience responding
mainly to a visualizing purpose.

We consider an input map at a high level of detail and we generalize it
through a procedure, which consists of a sequence of continuous functions,
called updates, over the corresponding complex, as indicated in [33, 3], until
we obtain a drastically generalized map. The sequence of updates is recorded
and a partial order among them is defined, which is based on a concept of de-
pendency. Two updates are mutually dependent if the combinatorial structure
of the map at the highest available level of detail cannot be retrieved if the
two updates are permuted in the sequence. The resulting framework can be
represented as a Directed Acyclic Graph (DAG) having updates as its nodes
and direct dependency links as its arcs. Each update in the DAG is a local
modification of the map, and thus corresponds to a local change of scale.

We propose an algorithm for extracting variable-scale maps from such a
framework, which is based on a top-down traversal of the DAG starting at its

Multi-VMap: a Multi-Scale Model for Vector Maps 3

root, that corresponds to the most generalized map. For each node traversed,
the corresponding local generalization update is possibly undone (i.e., the map
is locally refined), depending on input parameters that specify the desired level
of detail.

Obtaining a map which contains as less entities as possible and which
allows spatial analysis is the main functionality of our model. An example
is shown in Figure 1. In (a), we show a map at a small scale, as depicted
in the screen of an electronic device. Instead of managing the map at the
highest available level of detail that contains the zone of interest, shown in
(b), our model allows the user to manage a map in which detail is high just
where necessary, hence saving computational resources. The user could also
do vectorial flight simulation.

The rest of this paper is organized as follows. In Section 2 we report on
related work. In Section 3 we give preliminaries on representing vector maps
with plane graphs, capturing the combinatorial structure of a map by an ab-
stract cell complex, and we describe the atomic generalization updates. In
Section 4 we introduce their corresponding refinement updates that are at
the basis of our work. In Section 5 we consider collections of refinement up-
dates applied on a base map. In Section 6, we define feasible subsequences.
In Section 7, we present the concept of dependency among updates, and the
corresponding partial ordering on the set of updates. In Section 8 we study
feasible subsequences of updates, and we construct the operator to combine
updates in a feasible subsequence. In Section 9 we define our multiresolution
model, which naturally derives from the concept of feasible sequence, we in-
troduce an algorithm to extract a map at variable scale, and we evaluate the
expressive power of the model. Finally, in Section 10 we make some concluding
remarks.

2 Related Work

Cell complexes have proven to be of great value in geographic information
systems to model vector objects [23, 50]. The suitability of using cell complexes
is based on the theoretical results of algebraic topology [1, 39], which provide
means to check the consistency of representations defined on the basis of such
concepts. Simplicial complexes are particular cell complexes suitable to encode
triangulated maps [15]. They could as well be used to represent plane graphs
after a pre-processing triangulation phase [18, 51]. However, this solution is
inefficient, and it is not conceptually clean, since it focuses on the triangles
(that were introduced artificially just to decompose the domain) rather than
on the semantically relevant entities of the map. The same problem arises for
the rest of euclidean cell complexes, as those complexes with convex cells [17],
or CW-complexes [8, 32, 35, 53].

First existing multi-scale spatial databases, known as as multiple represen-
tations, consisted of collections of maps at different scales linked by hierar-

4 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

(a) (b)

(c)

Santa
Brigida

Telde

Airport

Ojos de Garza

Salinetas

Melenara

La Garita

EstrellaMajadilla

Goro

Agualona

Playa
Hombre

Las
PalmasGaldar

Arucas

Telde

Teror

Ingenio

Airport

Atlantic
Ocean

Telde

Airport

Ojos de Garza

Salinetas

Melenara

La Garita

EstrellaMajadilla

Goro

Agualona

Playa
Hombre

Fig. 1. (a) Map at a small scale. (b) Following a hierarchical approach, the map
of the same area at larger scale is divided in portions, and each of them is stored
separately as another map. (c) In our approach, the level of detail can be increased
just where necessary, while all the entities forming the rest of the map maintain
consistent topological relations.

chical structures [16, 44, 43]. This is the principle underlying several internet

Multi-VMap: a Multi-Scale Model for Vector Maps 5

applications (www.multimap.com, www.mapblast.com, www.mapquest.com,
etc.). In this view there is no relation between the different representations
of the same object at distinct scales. Moreover, it is not possible to obtain a
map in which the level of detail is variable through space (see Figure 1).

For the sake of consistency, other models have been developed which in-
clude information about how different entities are related in maps at different
levels of detail [19]. On this basis, the first hierarchical model formally de-
fined on a mathematical basis is [4], consisting of a tree of maps at different
resolutions, where each map is a refined description of a region of its parent
vertex in the tree. This model is improved in [33], where combinatorics is sep-
arated from geometry and semantics. In [3], a set of generalization operators
has been proposed, which support the encoding of relations between different
representations of the same entity at different scales, by consistent mapping
of entities from an input map onto their corresponding entities in a general-
ized map. Euler operators are general topological operators which allow the
manipulation of any plane graph, by supporting both insertion and removal
of any set of entities in the graph [30]. However, Euler operators do not allow
to keep track of the simplified entities and their mutual relationships in a
consistent way, and this is fundamental in order to build a multi-scale model.
The work of Stell and Worboys [40, 41, 42], based on the formalisation of
models for plane graphs at different levels of detail, presents quite similarities
to our work here. They use different simplification operators, with much more
cartographic meaning.

Spatial indexes, such as quadtrees, are techniques for processing collections
of entities based on their spatial position, and are suitable to locate entities
in a map [37, 38]. Reactive data structures [46] are hierarchical structures
which allow the retrieval of descriptions of an object at different levels of
detail by traversing a tree. The R-tree is a spatial indexing which consists of a
hierarchical representation of minimum bounding rectangles of objects. Some
examples of reactive structures are the reactive tree (based on the R-tree), the
BLG-tree for line generalization, and the GAP-tree, to support generalization
of area partitioning [49].

Recent approaches to multi-scale are often aimed at progressive transmis-
sion of maps. In [6, 7], a method is proposed for the progressive transmission
of lines, which is based on the popular Douglas-Peucker simplification algo-
rithm [14]. It uses tree structures, as in the BLG tree of [48]. The model
avoids undesired intersection between lines, but the topological consistency
of the simplified model, as we define here, is not ensured. In [5] a hierar-
chical model maintaining vertical links between representations of the same
entity at two consecutive levels is proposed, which is based on the same set
of operators, proposed in [3], that we consider here. This model supports the
progressive transmission of geographic maps in vector format, but it does not
support multi-scale operations such as focusing on a given area or extracting
a representation with variable scale through the domain of the map.

6 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

Instead of considering several maps at different fixed scale levels, on-
demand mapping refers to the creation of a map whose scale and purpose are
appropriate to user needs. This approach has been the subject of research [25]
focussing on the generalization issues. In [9, 36], other procedures to perform
map generalisation while preserving topological consistency are proposed. One
main feature is that instead of considering consistency regarding to complete
objects, only lines are considered. The concept of topological consistency only
involves geometric constraints. In [47], a vertex labelling procedure is proposed
that guarantees topological consistency across retrieved levels of detail.

Multiresolution models have been broadly studied for triangulated meshes
[11, 20, 28]. Such approaches could be applied to geographic maps as well,
provided that maps could be triangulated in a pre-processing step. On a more
abstract perspective, such multiresolution models are all based on two simple
concepts: a set of updates that are applied locally to modify the structure of
an object; and relations among those updates that control how they can be
combined to extract representations at variable resolution. In our approach,
we follow a similar strategy, in a rather different context, though.

3 Background

In this Section, we review basic concepts on plane graphs, the modelling of the
combinatorics of a plane graph by abstract cell complexes, and the topological
operators which will be used in our approach as functions to decrease the level
of detail in a map.

3.1 Vector Maps Represented as Plane Graphs

A plane pseudograph is a set of vertices and edges in the plane satisfying:

1. each edge joins either two different vertices, or a vertex to itself,
2. the faces of the graph are the connected components of the plane obtained

by removing the vertices and edges from it,
3. no two elements of the graph intersect.

We will refer to plane pseudographs as plane graphs. Edges joining a vertex
to itself are called loops, and different edges joining the same pair of vertices
are called multiple edges. The boundary of an edge is formed by the vertices it
joins. The boundary of a face is formed by the vertices and edges delimiting it,
and can be further subdivided into proper boundary and features. The proper
boundary of a face is formed by those vertices and edges bounding both it
and at least another different face. The elements in the proper boundary of
a face form cycles. There is one unbounded face called the infinite face. The
proper boundary of a face which is not the infinite one will be formed by
exactly one outer boundary (surrounding the whole face), and possibly some
inner boundaries (surrounding holes in the face). The infinite face has no outer

Multi-VMap: a Multi-Scale Model for Vector Maps 7

boundary, while it may have one or more inner boundaries. The features of
a face are those connected sets of vertices and edges which bound just such
face. The feature-vertices or feature-points of a face are the isolated vertices
puncturing it, and its feature-edges or feature-lines are those edges dangling
inside.

A plane graph has a geometric and a a combinatorial structure, implicitly
related. The geometry of the map is given by the coordinates of its vertices and
the geometry of its edges. The combinatorial structure of the graph reflects
how the elements of the graph are connected. The connectivity information of
a plane graph is usually expressed by incidence and adjacency relations, also
known as topological relations, between the elements of the graph. An edge and
each of the vertices it joins are said to be mutually incident, as well as a face
and each of the vertices and edges bounding it. Two vertices or two faces which
are incident at a common edge, as well as two edges incident at a common
vertex are said to be adjacent. For further details on this representation refer
to [10, 33].

A vector map M can be effectively represented by a plane graph as the
collection of its vertices, edges and faces, also known as points, lines and
regions respectively, together with their connectivity structure. We will use
the term entity to denote a point, a line, or a region of a map. In practice,
a map will not cover the whole plane, but a portion of it, called the domain
of the map. This is the portion of plane covered by all entities of the map,
except for the infinite region (see Fig. 2).

u
l7

p7

l6

p6

l5

p5

l4

p1

l12

l11

r

l8

l1

l2

p8

p11

p12

p3 l3

l10

t

l9

p2

p4
sp10p9

Fig. 2. Map whose domain is covered by regions r, s, t, u, and the entities bounding
them. The boundary of region r is decomposed into its outer boundary, formed by
cycle p1, l1, p2, l2; two inner boundaries: one formed by loop l3 and its endpoint p3,
and the other one formed by cycle p4, l4, p5, l5, p6, l6, p7, l7; and four features: l9
(feature-line); p9, l10 (feature-line), p10; p11, l11 (feature-line), p12, l12 (feature-line);
and p8 (feature-point).

8 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

3.2 Modelling the Combinatorial Structure of a Vector Map

An Abstract Cell Complex (ACC), defined in [26], is a purely topological struc-
ture which captures the combinatorial structure of a plane graph.

Definition 1. An ACC Γ is a triple (C,≺, dim), where:

• C is a finite set, called the set of cells;
• ≺ is a strict partial ordering on the elements of C (i.e., ≺ is an irreflexive,

antisymmetric, and transitive binary relation) called the bounding relation;
• dim : C → N, called the dimension function, is such that

γ ≺ γ′ ⇒ dim(γ) < dim(γ′), ∀ γ, γ′ ∈ C.

Given a plane graph, let C be the set formed by the union of its vertices,
edges and faces, and dim : C → N be the function which takes value 0 on
the vertices, 1 on the edges, and 2 on the faces of the graph. Defining partial
order ≺ as:

a ≺ b ⇐⇒ b belongs to the boundary of a,

it is clear that (C,≺, dim) is an ACC. Topological relations between entities
in a map can be translated in terms of cells in the corresponding complex. We
provide next some definitions referring to ACCs:

Definition 2. Given ACC Γ = (C,≺, dim):

(a) The boundary of a cell γ of Γ is defined as:

∂γ = {ξ ∈ C | ξ ≺ γ}.

(b) A cell γ for which dim(γ) = k is called a k-cell. An ACC is called d-
dimensional complex or a d-complex if maxγ∈C(dim(γ)) = d.

(c) A subcomplex Γa = (Ca,≺a, dima) of Γ = (C,≺, dim) is a complex whose
set Ca is a subset of C, and both relation ≺a and function dima are
restrictions of ≺ and dim to Ca respectively. We call the difference of Γ
and Γa, and denote it Γ \Γa, as the subcomplex of Γ whose set of cells is
C \ Ca.

(d) Given ACC Γ ′ = (C ′,≺′, dim′), and strict partial order relation I on
C ∪C ′, we call the I-union of Γ and Γ ′, and denote it Γ ∪I Γ ′, to complex
Γ ′′ = (C ′′,≺′′, dim′′), where:
• C ′′ = C ∪ C ′,
• dim′′ is defined as dim on C and dim′ on C ′,
• function ≺′′ is defined as:

ξ ≺′′ γ ⇐⇒

ξ ≺ γ, ∀ (ξ, γ) ∈ C × C,
ξ ≺′ γ, ∀ (ξ, γ) ∈ C ′ × C ′,
ξ I γ, ∀ (ξ, γ) ∈ (C × C ′) ∪ (C ′ × C) s.t. dim′′(ξ) < dim′′(γ),

Multi-VMap: a Multi-Scale Model for Vector Maps 9

We say that I is a bounding relation between Γ and Γ ′.

(e) Let k be the dimension of Γ , with 0 ≤ k ≤ 2. A planar embedding of Γ is
a mapping f : C → R2 such that no two images of cells in C intersect,
the image of a 0-cell is a point, the image of a 1-cell is a line, and the
image of a 2-cell is a region in the plane, and satisfying that:

γ ≺ γ′ ⇔ f(γ) belongs to the boundary of f(γ′).

In the remainder of the paper, a map M will be represented as a pair (Γ, f).
With an abuse of notation, we will indistinctly speak about the entities of a
map, namely points, lines and regions, and the 0−, 1− and 2− cells of its
associated complex.

3.3 Topological Abstraction Operators

In the description of topological operators to decrease the level of detail on a
map, we refer to the theory of map generalization proposed in [33] and devel-
oped in [3]. Abstraction operators are regarded as functions between ACCs
Γ and Γ ′ corresponding to two maps M and M ′, where M ′ is a generalized
version of M . A function is said to be consistent if it is surjective, monotonic,
and preserves connected sets of cells by inverse image:

• Due to the surjectivity assumption, an entity cannot appear in Γ ′ without
being the image of some entity in Γ .

• Monotonicity is defined in terms of the bounding relation of ACCs Γ and
Γ ′. It guarantees that two entities that are not incident in the co-domain
cannot be the images of entities incident in the domain.

• The preservation of connected sets by inverse image does not permit to
map completely disconnected sets of entities onto connected sets.

The reader is referred to [12, 33] for a discussion about the suitability of
atomic abstraction updates as functions to decrease the level of detail on a
map while maintaining a trade-off between cartographic principles and com-
binatorial consistency of the model.

The pair C = (O, A), where O is the set of all ACCs and A is the set
of all possible consistent combinatorial transformations between objects in
O, allows to give a formalization of the problem in terms of category the-
ory [2]. There exists a set of seven functions, called atomic operators, that
are necessary and sufficient to generate all strictly non-injective consistent
combinatorial transformations; thus, consistency is implicit in multiple repre-
sentation models built on the basis of such operators. They will be taken in
our approach as the set of abstraction updates. The interested reader can find
the complete theoretical development in [3].

An atomic operator is a consistent function mapping two or three entities
onto one entity, or, in other words, it deletes two or three entities from a

10 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

map containing them, and replaces them with a new entity. All remaining
entities are mapped one-to-one. The seven atomic operators are described in
the following:

(a) line-to-point
ltp : {(p, p′, l),≺} → {p0},

with p ≺ l and p′ ≺ l.
(b) region-to-point

rtp : {(p, l, r),≺} → {p0},
where p ≺ l, p ≺ r, l ≺ r, and there is no any entity different from p or l
which bounds r.

(c) region-to-line
rtl : {(l, l′, r),≺} → {l0},

where l ≺ r, l′ ≺ r, and there is no entity different from l, l′, or some of
the endpoints of these two lines which bounds r.

(d) line-merge
lm : {(p, l, l′),≺} → {l0},

where p ≺ l, p ≺ l′, and there is no line l′′ different from l or l′ s.t. p ≺ l′′.
(e) region-merge

rm : {(l, r, r′),≺} → {r0},
with l ≺ r and l ≺ r′.

(f) isolated-point-removal

ipr : {(p, r),≺} → {r0},
where p ≺ r and there is no line l s.t. p ≺ l.

(g) feature-line-removal

flr : {(l, r),≺} → {r0},
where l ≺ r and there is no region r′ such that r′ 6= r and l ≺ r′.

The seven atomic operators are depicted in Fig. 4 together.

4 Update Operations on a Map

Given map M = (Γ, f), we address the problem of creating another map
M ′ = (Γ ′, f ′), at a lower level of detail. The application of an update on M
consists in replacing some cells of Γ by some other cells, and modifying the
combinatorics so that another map is obtained. We are interested in how up-
dates change the combinatorics of a map. Of course every combinatorial vari-
ation involves a geometric change, but in this paper we are concerned with
creating a multiresolution model combinatorially consistent. Once a frame-
work satisfying this constraint is obtained, geometry should be fixed for the
model being also geometrically consistent.

Multi-VMap: a Multi-Scale Model for Vector Maps 11

Definition 3. Let M = (Γ, f) be a map, and u be a triple (Γa, Γb, I), where:

1. Γa is a subcomplex of Γ ,
2. Γb is an Abstract Cell Complex (ACC) of dimension less than or equal to

2,
3. I is a bounding relation between cell complexes Γb and ΓA, where ΓA is

the set of cells of Γ \ Γa which are incident at some cell of Γa,

If a planar embedding f ′ of Γb ∪I ΓA exists, such that the replacement in M
of f(Γa ∪ΓA) by f ′(Γb ∪I ΓA), is another map, we say that u is an update on
M .

In Figure 3 (a), update u1 is applied on map M = (Γ, f) to the left of the
figure, where u1 = (Γa, Γb, I) is defined as follows:

1. Γa is the subcomplex of Γ formed by line l and region r.
2. Γb is an ACC formed by region r′.
3. I specifies that each cell of Γ \ Γa that is incident at some cell of Γa will

bound r′.

Clearly, as the effect of this update is the removal of one feature-line, maintain-
ing the planar embedding of the rest of points and lines in the map produces
another map.

In Figure 3 (b), on the contrary, we show an example of application of a
triple u2 = (Γa, Γb, I) which is not an update. It is defined by:

1. Γa is the subcomplex of Γ formed by point p and region r.
2. Γb is an ACC formed by region r′.
3. I specifies that each cell of Γ \ Γa that is incident at some cell of Γa will

bound r′.

As a result of the replacement of Γa by Γb according to I, there is a line which
is not a loop and which has exactly one endpoint. Hence, there is not any
embedding from which a map can be obtained.

r′

l

r r′ r

p u2u1

(a) (b)

Fig. 3. Modification u1 in (a) is an update, whereas u2 in (b) is not.

Given update u = (Γa, Γb, I), let |Γa| be the number of cells in Γa and |Γb|
be the number of cells in Γb.

12 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

• if |Γa| > |Γb|, u is an abstraction update, and we will represent u as:

u : Γ+ I−→ Γ−,

with Γ+ = Γa and Γ− = Γb. Superscripts + and − are used to denote
more or less amount of cells respectively of the corresponding complex.

• if |Γa| < |Γb|, u is a refinement update, and we will write:

u : Γ− I−→ Γ+,

with Γ− = Γa and Γ+ = Γb.

The atomic operators described in the previous Section are functions delet-
ing two or three entities (complex Γ+) from a map containing them, and
replacing them with a new entity (complex Γ−). All remaining entities are
mapped one-to-one. As they are monotonic functions, each entity that was in-
cident at one of the entities which are removed becomes incident at the entity
replacing it. Thus, relation I of Definition 3 is implicitly given. It is immediate
to see that a planar embedding of Γ− and all the cells which become incident
at it can be given, such that the result of replacing Γ+ by Γ− on the corre-
sponding map continues being a map. Thus, atomic operators correspond to
abstraction updates, called atomic abstraction updates. As the definition of I
is the same for every type of atomic abstraction update, it can be omitted,
and we can denote an atomic abstraction update as:

u : Γ+ → Γ−

or equivalently:

u : {(γ(i)
a , γ

(j)
b , γ(k)

c),≺} → {γ(l)
d },

with possibly {γ(k)
c } = ∅. Superindexes (i), (j), (k), (l), with 0 ≤ i, j, k, l ≤

2 indicate the dimension of the corresponding cell, i.e., if i = 0, γ
(i)
a is a point,

if i = 1, γ
(i)
a is a line, and if i = 2, γ

(i)
a is a region. With this notation, function

dim of Definition 1 is implicitly given.

4.1 Atomic Refinement Updates

For each atomic abstraction update u : {(γ(i)
a , γ

(j)
b , γ

(k)
c),≺} → {γ(l)

d }, a
corresponding atomic refinement update, which will replace entity {γ(l)

d } by
{(γ(i)

a , γ
(j)
b , γ

(k)
c),≺} will be defined. In order to univocally define an atomic

refinement update, incidence relation I on those entities incident at γ
(l)
d must

be specified. This latter part is crucial to ensure the correctness of refinement,
but it makes refinement more complicated than abstraction. Note that, de-
pending on how combinatorial relations are recovered, different maps could

Multi-VMap: a Multi-Scale Model for Vector Maps 13

p p’
l

0
p

M M’

l l’ 0lr

M M’

(c)

p

l

l’

M

0l

M’

(d)

l

0
p

0
p

r r’

r
0

r
0

r
0

l

r
0

r
0p

(a)

(b)

r

M M’

(e)

M M’

l

M

(g)

M’M M’

(f)

ltp : {p, p′, l} → {p0}

rtl : {l, l′, r} → {l0}

ltr : {l0} → {l, l′, r}

lm : {l, l′, p} → {l0}

ls : {l0} → {l, l′, p}

ptl : {p0} → {(p, p′, l), I}

ptr : {p0} → {(p0, l, r), I}

rtp : {p0, l, r} → {p0}

rs : {r0} → {(r, r′, l), I}

rm : {r, r′, l} → {r0}

fla : {r0} → {(l, r0), I}

flr : {l, r0} → {r0}fpr : {p, r0} → {r0}

fpa : {r0} → {p, r0}

Fig. 4. Pairs of mutually inverse atomic abstraction/refinement updates.

14 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

be obtained. In Fig. 5 we show alternative atomic refinement updates, applied
on each map M ′ which was obtained applying the atomic abstraction updates
shown in Fig. 4 (a), (b), (e), and (g). We observe that, although the entities
replaced are exactly the same, the corresponding original map M of Fig. 4 is
not retrieved.

p’

l

0
p p

r
0

r

r’

lr
0

r
0

0
p

l

0
p

r

M’ M’’

M’ M’’

l

M’ M’’

M’ M’’

ptl : {p0} → {(p, p′, l), I′} ptr : {p0} → {(p0, l, r), I′}

rs : {r0} → {(r, r′, l), I′} fla : {r0} → {(l, r0), I′}

Fig. 5. The atomic refinement updates shown here are not inverse updates of the
corresponding atomic abstraction updates in Fig. 4 (a), (b), (e), and (g).

The atomic refinement updates are described in the following, and pairs
of inverse atomic updates of each type are represented in Fig. 4.

(a) point-to-line ptl : {p0} → {(p, p′, l), I},
where l is a line whose endpoints, p and p′, are different. To uniquely
specify the combinatorial relations of all the lines and regions incident at
p0, it can be easily proved that it is sufficient that I specifies which of
the lines incident at p0 become incident at p and/or p′ and, in case l is a
feature-line, which of the regions incident at p0 will contain such line (see
Fig. 4 (a)).

(b) point-to-region ptr : {p0} → {(p, l, r), I},
where r is a simply-connected region without internal features, whose
boundary is formed just by a loop l and its endpoint p, and I must specify
which of the regions incident at p0 must contain line l (see Fig. 4 (b)).

Multi-VMap: a Multi-Scale Model for Vector Maps 15

Since points p and p0 are coincide their only combinatorial difference being
that p is incident at l and r, while p0 is not, points p0 and p will be con-
sidered to be the same point, and we will write ptr : {p0} → {(p0, l, r), I}.

(c) line-to-region ltr : {l0} → {l, l′, r},
where r is a simply-connected region without internal features, whose
boundary is formed by two distinct lines, l and l′ and their common end-
points (see Fig. 4 (c)). As the flattening of {l0} to {l, l′, r} is univocal, the
explicit specification of I is not required.

(d) line-split ls : {l0} → {l, l′, p},
where l, l′, with l 6= l′, are two (non-loop) lines incident at a common
point p, which does not bound any other line (see Fig. 4 (d)). In this case,
I is univocally defined from the corresponding atomic abstraction update.

(e) region-split rs : {r0} → {(r, r′, l), I},
where r, r′, with r 6= r′, are two regions having a common bounding line l,
and I must specify the two points p1 and p2 that will bound line l, and how
to partition the inner boundaries and features of r0 which will continue
being inside one of the two newly created regions into two subsets: the
inner boundaries and features that will bound r, and the inner boundaries
and features that will bound r′ (see Fig. 4 (e)).

(f) feature-point-addition fpa : {r0} → {p, r},
where p is an isolated point inside region r (see Fig. 4 (f)).
Combinatorially, regions r0 and r only differ in that r is incident at point
p and r0 is not. Therefore, we will consider r to be the same region as r0,
and we will write fpa : {r0} → {p, r0}.
Relation I is univocally defined, so it has not been specified.

(g) feature-line-addition fla : {r0} → {(l, r), I},
where l is a feature-line in region r, and I must specify the endpoints of
line l (see Fig. 4 (g)).
The only combinatorial difference between r0 and r is that r is incident
at l and r is not. Thus, we will consider r0 to be the same region as r and
we will write fla : {r0} → {(l, r0), I}.
Given a map on which a sequence of abstraction updates has been applied,

atomic refinement updates allow the sequence to be reversed.

5 Sequences of Atomic Refinement Updates

Given a map M , any generalization of M can be obtained from it by applying a
suitable sequence of abstraction updates [3]. Let us define a sequence of atomic
abstraction updates for M as a pair S = (M,U = (u1, u2, . . . , uk)), where
U = (u1, u2, . . . , uk) is a collection of atomic abstraction updates, satisfying
that u1 is an update on M , and every ui, 2 ≤ i ≤ k, is an update on the map
obtained by applying to M all updates preceding ui in the collection. We will
denote M the generalized map obtained by applying all updates of S to M in

16 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

the given sequence. Note that, since atomic abstraction updates are defined
as functions, their composition is also a function, called the generalization
function, which provides a correspondence between each entity in M and its
representative in M . In general, each entity in M will be the representative of
one or more entities in M , forming its inverse image through the generalization
function.

We will also denote as S = (M,U = (u1, u2, . . . , uk)) the inverse sequence
of atomic refinement updates, where, for 1 ≤ i ≤ k, uk−i+1 and ui are mu-
tually inverse updates, and M is the map obtained from M by applying all
modifications of S to it. In our notation, the upper bar is meant to suggest
higher detail and, conversely, the lower bar is meant to suggest lower detail.
Fig. 6 (a) shows a sequence of atomic abstraction updates (when going from
M to M), and its inverse sequence of atomic refinement updates (when going
from M to M).

point-to-line forest

p4 p5

p2

l1 l2

l3 l4

l0

u1 u2 u3 u4

u
4

u
3

u
2

u
1

M

(a)

M

p1

p0

l0

r p3

sl5 l6

p5p4
l7

{l0} → {l1, l2, p2} {p2} → {(p4, p5, l7), I}

{p4, p5, l7} → {p2}

(b)

p2

l1

l2
l3

l4

line-split forest

line-to-region forest

l5 l6

l1

{l1, l2, p2} → {l0}

{l2} → {l3, l4, p3} {l1} → {l5, l6, s}

{l3, l4, p3} → {l2} {l5, l6, s} → {l1}

Fig. 6. (a) S = (M, U = (u1, u2, u3, u4)) is a sequence of atomic abstraction up-
dates and S = (M, U = (u1, u2, u3, u4)) is its inverse sequence of atomic refinement
updates. (b) Forests of updates corresponding to the sequence represented in (a).

Multi-VMap: a Multi-Scale Model for Vector Maps 17

Map M is the map at the smallest scale (lowest detail) that we will con-
sider, and we will call it the base map. Conversely, map M is the map at
the largest scale (largest detail) that we will consider, and we will call it the
reference map.

Sequence S = (M,U = (u1, u2, . . . , uk)) is non-redundant if each entity ci,
that has been removed from an update ui in the sequence, is never introduced
again from another update uj following ui in the sequence. Redundant se-
quences are not useful, so we will always assume to deal with non-redundant
sequences.

The following forests formed by entities appearing in sequence S will be
created:

• In a point-to-line forest: roots are points created from updates of type line-
split, or type feature-point-addition; and the children of a node are the two
points created from it in an update of type point-to-line.

• In a line-split [line-to-region] forest: roots are lines created from updates
of types point-to-line, point-to-region, region-split, or feature-line-addition;
and the children of a line are the two lines obtained from it through an
update of type line-split [line-to-region].

• In a region-split forest: roots are those regions created from updates of type
either point-to-region or line-to-region; and the children of a region are the
two regions obtained from it through an update of type region-split.

Given an entity e, we define its most abstract representative E to be the
root of the tree e belongs to. If e does not belong to any forest of updates,
the most abstract representative of e is itself.

As all the entities in a tree of updates derive from the same entity (the
root of the tree), under certain conditions a group of entities in the tree will be
allowed to be represented by the same entity in maps obtained at intermediate
scale between M and M which did not originally appear in S.

Map M can be obtained from M by applying all updates in S. However,
it is also possible to apply the updates in S selectively, thus obtaining maps
that are at an intermediate scale between M and M . One obvious possibility
is to truncate the sequence at some point, but it is also possible to apply
other subsequences, which skip some of the updates in the original sequence.
However, not all (combinatorially many) subsequences produce meaningful
results. This subject will be the matter of the following section.

6 Feasible subsequences

Given sequence S = (M,U = (u1, u2, . . . , uk)), we must analyse the problem-
atic of applying a subcollection U ′ = (ui1 , ui2 , . . . , uih

) of U on M . In this and
the next three sections, we will tackle the following subjects:

18 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

• Define the necessary conditions to apply a given update, hence a partial
order among updates. This is done by analysing each of the seven refine-
ment updates and, for each of them, by defining what entities are strictly
necessary to belong to a map in order to apply the update on it.

• Given a collection of updates consistent with the partial order, define an
operator that specifies how to apply on M such collection of updates.
The definition of this operator is necessary because each update in the
collection is not applied in exactly the same situation as in the original
sequence. Therefore, it is not always obvious what the effect of an update
will be on a given map.

• Throughout this process, the combinatorial identity of the original se-
quence should not be lost, i.e, if a collection containing some of the updates
in U is applied on M , the subsequent application of the rest of updates in
U should give as final result M .

(a)

(b)

M

p1

p0

l0

r

M

l6sl5
p5p4 l7

u2 u1
l2

p2

p3
l3

l4

u3u1
u4

MM

u2

p5

l6
l1

l0

r0p1

p0

p2

l2

l5

p4
l7

p3

l3

l4

r1

u4 u3

Fig. 7. Two different subsequences obtained from sequence in Fig. 6 (a). Sequence
in (a) is not feasible, whereas sequence in (b) is.

On the basis of the previous explanation, we give the formal definition of
subsequence and of subsequences we are interested in.

Definition 4. Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of refinement
updates.

(i) A subsequence S
′
of S is a triple (M,U ′ = (ui1 , ui2 , . . . , uih

),⊕), where
U ′ = (ui1 , ui2 , . . . , uih

) is a collection of updates belonging to U , and ⊕ is a
composition operator specifying how the updates in U ′ must be sequentially

Multi-VMap: a Multi-Scale Model for Vector Maps 19

applied on M , so that maps, denoted M ⊕ ui1 ⊕ ui2 ⊕ . . . ⊕ uij , for all
1 ≤ j ≤ h, are successively obtained.

(ii) Let m = max {i1, i2, . . . , ih}, and let M be the map obtained by ap-
plying (u1, u2, . . . , um) in S. We say that subsequence S

′
= (M,U ′ =

(ui1 , ui2 , . . . , uih
), ⊕) is feasible if:

M = M ⊕ ui1 ⊕ ui2 ⊕ . . .⊕ uih
⊕

m∑

j=1

j 6=i1,...,ih

uj

where the summations are performed by ⊕ operator.

In other words, we say that subsequence S
′
is feasible if the map obtained

after applying all the updates in U on M is the same map as the map obtained
after the application on M of the updates in U ′ followed by the updates in
U \ U ′. The subsequence shown in Fig. 7 (a) is not feasible, whereas the one
shown in (b) is feasible.

In the next two sections, we analyse how to construct feasible subsequences
of a given sequence S = (M,U = (u1, u2, . . . , uk)). In section 7, we define
a dependency relation between updates, that will be modelled as a partial
order. In section 8, we consider any collection U ′ = (ui1 , ui2 , . . . , uih

), formed
by updates of U , which is consistent with such partial order, and we define
an operator, ⊕

S
, such that S

′
= (M,U ′ = (ui1 , ui2 , . . . , uih

),⊕
S
) is a feasible

subsequence of S.

7 Partial order

Consider sequence S = (M,U = (u1, u2, . . . , uk)). For each update u in U ,
it will be said to be directly dependent on all and only those updates that
introduce some entities. We will see that the transitive closure of the direct
dependency relation is a strict partial order.

The definition of direct dependency of update:

u : {γ(l)
d } I−→ {(γ(i)

a , γ
(j)
b , γ(k)

c),≺}
is based on the analysis of what entities must have been created before ap-
plying u, and relies on the following key factors:

• To apply update u, instead of demanding that γ
(l)
d belongs to the map,

it will be only required that its most abstract representative has been
previously created.

• If u is an update of types either point-to-line and point-to-region, exactly
one of the entities in {γ(i)

a , γ
(j)
b , γ

(k)
c } is a line. Such line was incident in S

at either one or two already existing regions. We will require that the most

20 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

abstract representative of such regions have been created before u is ap-
plied. According to the arrangement of entities in form of forests described
in Section 5, the most abstract representatives of the regions must have
been created in an update of type either point-to-region or line-to-region.
This situation corresponds to the example shown in Fig. 8, where in (b)
we show a subsequence of sequence in (a) which is not feasible, because
when update u2 [u3], of type point-to-line [point-to-region] is applied, line
l3 [loop l4] becomes incident at region r2. In subsequence shown in (b),
we observe that when feature-line l3 [loop l4] was created, region r2 did
not exist. Thus, although r2 is created in a posterior update, l3 [l4] will be
outside it, and the combinatorics of map M cannot be retrieved, as there
is no atomic refinement update which can make a line that is outside a
region jump inside it.

• Let u be an update of type either feature-line-addition or region-split. In
this case, also exactly one of the entities in {γ(i)

a , γ
(j)
b , γ

(k)
c } is a line, which

was incident in S at two existing points (possibly coincident). We will
require that the most abstract representative of such points have been
created before u is applied. Such representatives must necessarily have
been created in an update of type either line-split or feature-point-addition.

(a)

(b)

r0

r1

l0

l0

r0

r1

p0

l3

l1

l2

u1

u1u2 u3

r3

M

M

p0

l3

l4

M

r3

u2 u3

r2

l2

l1

r2

l4

Fig. 8. (a) Sequence S of atomic refinement updates. (b) Subsequence of S which
is not feasible.

• In updates of types feature-line-addition and region-split, besides requiring
that the most abstract representatives of the endpoints of l exist, it must
also be required that they are disconnected or connected respectively, oth-

Multi-VMap: a Multi-Scale Model for Vector Maps 21

erwise the corresponding update cannot be applied. Assume u is an update
of type region-split, and let p1 and p2 be the endpoints of the splitting line
when this update was applied in the original sequence. Points p1 and p2

had to be connected before u was applied. The only type of atomic re-
finement update which can connect two points that are disconnected is
feature-line-addition. Thus, provided the most abstract representatives of
p1 and p2 were not connected when they were created, some feature-lines
must have been created in updates previous to u in S to connect them.
We will require to apply u that such feature-lines have been created (see
Fig. 9).

u2r0

p0

p1

u1 u3 u4
r2r1

r3

r4

l2

l3
l1

l0

Fig. 9. If any of the feature-lines l0, l2 has not been created before u4 is applied, the
line introduced by u4 will not split any region in two. Thus, update u4 is directly
dependent on the updates in which l0 and l2 where created, u1 and u2 respectively.

According to this criteria, we give the formal definition of the direct de-
pendency relation.

Definition 5. Given sequence S = (M,U = (u1, u2, . . . , uk)), we say that
update uj : Γ−j = {γj} → Γ+

j is directly dependent on update ui : Γ−i → Γ+
i

if some of the following conditions hold:

1. The most abstract representative of γj ∈ Γ+
i .

2. uj is an update of type either point-to-line or point-to-region, and ui is an
update of type either point-to-region or line-to-region, such that the line
created in uj is incident in S at the region created in ui.

3. uj is an update of type either feature-line-addition or region-split, and ui

is an update of type either line-split or feature-point-addition, such that
the line created in uj is incident in S at some point created in ui.

4. uj is an update of type region-split, and ui is an update of type feature-line-
addition, such that the feature-line created in ui connects the endpoints of
the line created in uj.

Note that, as there is no atomic refinement update which can make two
points that are connected to become disconnected, and feature-line-addition
is the only atomic refinement update which can make two points that are

22 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

disconnected to become connected, the set of feature lines which in S connect
the representatives of the endpoints of l is univocally defined.

A collection U ′ = (ui1 , ui2 , . . . , uih
), formed by updates of U , is said to be

closed with respect to the relation of direct dependency, if for each update in
U ′, all the updates it directly depends on are previous to it in U ′.

It is clear that, if sequence S = (M, U = (u1, u2, . . . , uk)) is non-
redundant, and update uj in S is directly dependent on ui, update ui is
previous to uj in U . From this fact, the next proposition follows.

Proposition 1. Let S = (M,U = (u1, u2, . . . , uk)) be a non-redundant se-
quence of atomic refinement updates. The transitive closure of the direct de-
pendency relation is a strict partial order, ≺.

Given sequence S = (M,U = (u1, u2, . . . , uk)), from now on we will only
consider collections U ′ = (ui1 , ui2 , . . . , uih

), obtained from U , consistent with
≺, i.e., closed with respect to the relation of direct dependency.

In the next section, we define an operator, ⊕
S
, which specifies how to

apply U ′ on M , so that subsequence S
′
= (M,U ′ = (ui1 , ui2 , . . . , uih

),⊕
S
) is

feasible.

8 Constructing a feasible subsequence

In this Section, we develop algorithms to build a feasible subsequence from
any collection of updates which is closed with respect to the relation of direct
dependency. For the sake of clarity, the proofs of this section are given in a
separate Appendix.

Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic refinement
updates, and U ′ = (ui1 , ui2 , . . . , uih

) be any collection of updates closed with
respect to the relation of direct dependency. Each update in U ′:

u : {γd} I−→ {(γa, γb, γc),≺},

where for the sake of clarity we have omitted dimension superscripts, must be
applied on the map M obtained after applying on M all updates preceding u
in U ′. As map M is not necessarily the same map on which u was applied in
S, M might not contain γd and/or the rest of entities that were incident at γd

when u was applied in S. Thus, to apply u on M operator ⊕
S

has to specify:

(a) which entity γ′d of M will play the role of γd, i.e., must be removed from
M when u is applied. Entity γ′d will be said to represent γd in M ,

(b) the entities which will replace γ′d in M ,

(c) how the entities replacing γ′d will be combinatorially related with the rest
of entities in M .

Multi-VMap: a Multi-Scale Model for Vector Maps 23

We will refer to (a) and (b) as the representation process.
Given an entity γ appearing in S, consider all the entities it is incident at

in the maps associated to sequence S. Although all such entities were known,
in a feasible subsequence entity γ might appear in a map not containing any
such entities. For example, in sequence S of Figure 6 (a) we observe that
the points at which line l2 is incident are p1 and p2. Nevertheless, in feasible
subsequence of S shown in Figure 7 (b), when update u4 is applied, point p2 is
removed from the map and replaced by two other points, and we should know
at which of them line l2 must become incident. To define rules specifying how
to modify combinatorics when an update is applied, we define the univocal
incidence concept, which will be also used in the representation process.

Definition 6. Given entities a and b, let

• D(a) be the set of entities incident at a or some descendant of a.
• A(b) be the set of entities incident at b or some ancestor of b.

We say that a is univocally incident at b if the following three conditions hold:

1. a ∈ A(b),
2. CHILDREN(b) ⊂ D(a),
3. there is no ancestor of b satisfying 1. and 2.

We observe that if b is a leaf, CHILDREN(b) = ∅ ⊂ D(a).
Considering again the example of Figure 7 (a), we notice that line l2 is

univocally incident at points p1 and p4, and when update u4 is applied in
feasible subsequence of Figure 7 (b), line l2 has as endpoints are p1 and p4.
We will see later on that the univocal incidence concept is essential to update
combinatorics in a feasible subsequence.

We can consider the straightforward extension of the definition of univocal
incidence when cell γ represents an inner boundary or feature.

From each tree τ in the forests of updates, another tree, called representa-
tion tree and denoted Rτ , is created. It encodes the incidence relations of all
the entities created in the updates associated to τ , and allows keeping track
of which nodes of τ are represented by the same entity in M . Whenever a
node of τ is split up into its two children, an entity incident at both children
is also created. Such entities do not belong to τ . However, they will play a
fundamental role in the representation process, as they connect the nodes of
τ . We provide next the definition of the representation tree Rτ corresponding
to τ .

Definition 7. Let S = (M,U = (u1, . . . , un),⊕
S
) be a sequence of atomic

refinement updates closed with respect to the relation of direct dependency.
For each tree τ in the forests of updates of S, its representation tree Rτ is
created as follows:

24 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

Nodes of Rτ .- The set of nodes will be the set of entities created in the updates
associated to τ but which are not nodes of τ (denoted ν), plus the set of
nodes of τ at which each such entities is univocally incident (denoted c).

Arcs of Rτ .- There is an arc between two nodes ν and c if either ν is uni-
vocally incident at c, or c is an internal node of τ and ν is the node that
represents the entity created when c is split up into its two children.

24 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

(b) (c)

(a)

r6

r5

r4

r6

r8r3

r5

r7

r1 r2

r0

p3 p4

p5
p6

p7

l1 l2

l3

l4

r0

r2

l5

r1

r5

r6

l7

r7

r8

p9
l10

l11

p8
l8

l9

l12

r3 r2 r7 r8

l7

l6 l5 l12

u1

u2

u3 u4

u5

u6

M1

M2

l6

r3 r4

M3
M4

M5

M6

M7

Fig. 10. (a) Sequence S of atomic refinement updates. (b) Region-split tree τ cor-
responding to the sequence in (a). (c) Representation tree Rτ .

In Fig. 10 (a), a sequence of atomic refinement updates is shown. The
representation tree corresponding to the tree of region-split updates of (b) is

Multi-VMap: a Multi-Scale Model for Vector Maps 25

shown in (c). The next Lemma states that the set of nodes and arcs of Rτ

has a tree structure.

Lemma 1. Rτ is a tree.

We give next the definition of operator ⊕
S

as a constructive algorithm
that builds a feasible subsequence from any collection of updates closed with
respect to the relation of direct dependency.

Algorithm Building Feasible Subsequence

Input.- Sequence S = (M,U = (u1, u2, . . . , uk)), and collection of updates
U ′ = (ui1 , ui2 , . . . , uih

), closed with respect to the relation of direct depen-
dency.
Output.- M = M ⊕

S
ui1 ⊕S

ui2 ⊕S
. . .⊕

S
uih

.

1. for uij : {γd} I−→ {(γa, γb, γc),≺}, with 1 ≤ j ≤ h, do
2. if γd does not belong to any tree in the forest of updates
3. then γ′d = γd

4. else γ′d = root of tree τ to which γd belongs.
5. M = M

6. for uij : {γd} I−→ {(γa, γb, γc),≺}, with 1 ≤ j ≤ h, do
7. remove γ′d from M and add entities of the same types as γa, γb, γc

8. Representation Process(uij ,M)
9. Update Combinatorics(uij ,M)

Procedure Representation Process is given next.

Representation Process

Input.- Map M and update u : {γd} I−→ {(γa, γb, γc),≺}, where entity γc is not
of the same type as γd.
Output.- Entities of S represented by the entities added to the map, which
are of the same types as γa, γb, γc.

1. if γd does not belong to any tree in the forest of updates
2. then α represents only α, ∀ α ∈ {γa, γb, γc}
3. else γc and its incident arcs are deleted from Rτ

4. if an incident arc connects γc with an internal node of τ
5. then also such node, and all its incident arcs, are

removed from Rτ .
6. All leaves of τ contained in R(i)

τ , with 1 ≤ i ≤ 2, are
represented by the entity added to the map of the same
type as γd.

26 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

7. Each entity in R(i)
τ , with 1 ≤ i ≤ 2, which is not a

node of τ the entity of τ in whose splitting such entity
was created, is represented by the same entity as R(i)

τ .

In procedure Update Combinatorics, the univocal incidence concept
plays a fundamental role. We must make a remark on how many points can
be univocally incident at a line. In case l is a loop all over S, the two points
it is univocally incident at will be coincident. But if at some stage of S line l
stops being a loop (i.e., the endpoint of the loop is the input of an update of
type point-to-line), we will assume we have a different line, and we will find
the two points it is univocally incident at. We will consider l is univocally
incident at exactly those two points.

Update Combinatorics

Input.- Map M and update u : {γd} → {γa, γb, γc}.
Output.- Entities of M at which entities γa, γb, γc are incident.

1. if the endpoints of line l are required
2. they will be the points l is univocally incident at.
3. if the region in M containing an inner component is required
4. it will be the region f is univocally incident at.

The correctness of Algorithm Build Subsequence is proved in the next
proposition.

Proposition 2. Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic
refinement updates, and U ′ = (ui1 , ui2 , . . . , uih

) be a collection closed with
respect to the relation of direct dependency. Then, the output M = M ⊕

S

ui1 ⊕S
ui2 ⊕S

. . .⊕
S

uih
of Algorithm BuildSubsequence is a map.

Once the definition of ⊕
S

is complete, we are in conditions to prove the
result we have been searching throughout this section.

Theorem 1. Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic
refinement updates, and let U ′ = (ui1 , ui2 , . . . , uih

) be a collection of updates
closed with respect to the relation of direct dependency. Then, S

′
= (M,U ′ =

(ui1 , ui2 , . . . , uih
), ⊕

S
) is a feasible subsequence of S.

9 The Multiresolution Model

In this Section, we define our multi-scale model for maps, called Multi-VMap,
which is inspired by the Multi-Triangulation developed for triangle meshes
[11, 34].

We define a Multi-VMap as the pair (S,≺), where:

Multi-VMap: a Multi-Scale Model for Vector Maps 27

• S = (M, (u1, u2, . . . , uk)) is a sequence of atomic refinement updates,
which is the inverse of a sequence S = (M, (u1, u2, . . . , uk)) of abstrac-
tion updates that have been performed during a generalization process.

• ≺ is the partial order on {u1, u2, . . . , uk} defined by direct dependency in
Section 7.

Any partially ordered set can be represented as a Directed Acyclic Graph
(DAG). In the case of the Multi-VMap, it will have an initial update u0 =
(∅,M) as root, updates as its nodes and direct dependency links as its arcs
(see Fig. 11).

A subMulti-VMap is the restriction of a Multi-VMap to a set of updates
closed with respect to the relation of direct dependency. We have proved in
Proposition 2 that the application of all the updates in a subMulti-VMap to
the base map M produces a map. The map obtained after the application of
all the updates in a subMulti-VMap is called an extracted map.

u0

u1 u2 u3

u4 u5

u6

Fig. 11. DAG representing the Multi-VMap corresponding to the sequence of Fig.
10, and extracted map obtained from the subMulti-VMap surrounded by a dotted
line.

9.1 Extracting a map at resolution variable in space

We are now interested in obtaining a map whose scale is variable in space,
according to arbitrary user requirements. We assume that user requirements
are given by means of an external Boolean function b(), defined over the
updates of a Multi-VMap, which decides whether an update is necessary or not
in order to achieve (locally) the level of detail needed by the user/application.

28 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

For instance, if all updates acting in a certain area of interest are necessary,
then refinement will produce the maximum level of detail inside that area,
while leaving the rest of the map at a lower detail.

The selective refinement will produce the smallest map, extracted from
the Multi-VMap, in which all updates necessary according to b() have been
performed. Such map is generated from the minimal set of updates which
contains all updates necessary according to b(), and is closed with respect to
the relation of direct dependency. To find such set, the DAG representing the
Multi-VMap will be traversed, starting from its root. A subset N of nodes
closed with respect to the relation of direct dependency must be maintained,
and nodes will be successively added to N until every entity composing the
corresponding extracted map, MN , attains the required resolution.

The data structure encoding the Multi-VMap, which is the subject of
future work, must support the following primitives, referring to a node V
involving update u in the DAG representing the Multi-VMap:

children(V) : returns those nodes children of node V in the DAG
refine test (V, N): given node V not in N , returns true if all its parents

belong to N ;
dependencies retrieval (V, N): given node V not in N , returns those

nodes that are parents of node V and are not in N ;
map refinement (MN , V): refines map MN by applying u, i.e., produces

map MN ⊕
S

u;

Let us assume that primitives children, refine test and dependen-
cies retrieval can be performed in time linear in its output size. Let us
evaluate the worst case complexity of primitive map refinement.

Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic refinement
updates, and let S

′
= (M, U ′ = (ui1 , ui2 , . . . , uih

), ⊕
S
) be a subsequence of S

such that U ′ is closed with respect to the relation of direct dependency. Let us
now study the time complexity of applying update uij : {c} → {a1, a2, a3} of
U ′ on map M = M ⊕

S
ui1 ⊕S

. . .⊕
S

ui(j−1) . The entity representing c in M is
found in constant time, provided c has a reference to the entity representing
it. To find which entities of S represents each entity created in uij , if uij is of
type point-to-region, feature-point-addition, or feature-line-addition, it takes
constant time. Otherwise, a representation tree must be cut into two, and in
the worst case this requires O(k) time. Finally, the update of combinatorics
takes O(m) time, where m is the number of combinatorial relations which
must be updated. Hence, the next result follows.

Proposition 3. Given sequence S = (M,U = (u1, u2, . . . , uk)), and feasible
subsequence S

′
= (M,U ′ = (ui1 , ui2 , . . . , uih

),⊕
S
) of S, the application of

update uij , 1 ≤ j ≤ h, on map M ⊕
S

ui1 ⊕S
. . .⊕

S
ui(j−1) requires O(k + m)

time, where m is the number of combinatorial relations which must be updated
due to the application of uij .

Multi-VMap: a Multi-Scale Model for Vector Maps 29

Let us take into account that, assuming a node V must be added to N ,
provided any node W which is a parent of V is not in N , W must be added
to N before the inclusion of V . This is done in the following procedure.

Add Node (V, N)

1. if (refine test (V, N)=false) do
2. for all node W ∈ dependencies retrieval (V, N) do
3. ADD NODE (W,N)
4. S = S ∪ {V }
5. map refinement(MN , V)

Algorithm Selective Refinement performs a DAG traversal to find the
required subgraph of the DAG. We adopt the following notation:

• b(N), with N a set of nodes, is used for convenience with the meaning that
b(N) is true iff b(V) is true for all node V belonging to N .

• children (N) denotes all nodes in N which are children of some node in
S.

Algorithm Selective Refinement

Input. DAG of k nodes representing a Multi-VMap, and boolean function b()
Output. Extracted map MN = M ⊕ui1 ⊕ . . .⊕uij , of the lowest possible size,
such that b(MN) is not true for any update which is not in {ui1 , . . . , uij} is
true

1. node V = root of the DAG, N = {V }, MN = M
2. C = children(S)
3. while (b(C) is false) do
4. for all nodes W ∈ C such that b(W) = false do
5. ADD NODE (W,N)
6. C = children (S)

In the worst case, condition of line 3 in Algorithm Selective Refinement
must be checked k times. We are assuming that primitives children, re-
fine test and dependencies retrieval can be performed in time linear in
its output size. As map refinement can be performed in O(k +m) time, as-
suming r refinement updates must be performed to have the required level of
detail, Algorithm Selective Refinement can be performed in O(r(k+m))
time.

Proposition 4. Given a Multi-VMap M and a Boolean condition b(), the
map of the smallest size MN such that b(M) is true can be extracted in O(r(k+
m)) time, where k is the number of nodes in M, m is the maximum number of
combinatorial changes required to performed any update, and r is the number
of updates which must be applied to have the required resolution.

30 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

The following proposition provides a lower bound for the expressive power
of the Multi-VMap, i.e., the number of different maps which can be extracted
from it.

Proposition 5. Given map M with n entities, from which a Multi-VMap
with height h has been built, at least 2d

n
2h e different maps can be extracted

from the Multi-VMap

Proof

(S,≺) is a finite partially ordered set. A chain in S is a set of pairwise
comparable elements (i.e., a totally ordered subset). And an antichain in S is
a set of pairwise incomparable elements. By Dilworth’s Lemma ([13]), calling
k to the number of elements in S and h to the cardinality of the longest chain,
a partition of the k elements into h antichains must exist. Hence, an antichain
must exist with at least d k

he elements. In our case, as the DAG has height h,
and each atomic abstraction update reduces the cardinality of a map for at
most two elements, the number of nodes must be greater than n

2 . Thus, an
antichain must exist with at least d n

2he elements. ¤
Although the process of obtaining a sequence of simplified versions of a

reference map M greatly relies on the cartographic practice of generalization,
we will show in the next proposition that, disregarding the semantics in the
generalization process, independent atomic abstraction updates can be per-
formed allowing to build a trivial map (formed by one only region) from M
in two steps, i.e., a DAG of height 2 can be built.

Proposition 6. Given map M , the set of atomic abstraction updates allows
to build a Multi-VMap whose base map has just one simple region with height
of the DAG less than or equal to 2

Proof

We consider a partition of the entities in M into feature entities (feature-
points, feature-lines, and points joining two adjacent feature-lines) and non-
feature entities (simply called points, lines and regions).

We know that updates of type feature-point-removal can be applied inde-
pendently on every isolated point, and updates of type feature-line-removal
can also be applied independently to remove every feature line. Hence, in
the first level of the DAG, there is no feature-point or feature-line, and those
points which were incident at several feature-lines and which have become iso-
lated, can be removed independently in the next step, thus in the next level
of the DAG there will not be any feature-entity.

Let us now see how many non-feature entities (points, lines, and regions)
can be removed by independent updates. All the regions can be reduced to one
only region by the independent application of updates of type region-merge.
Update region-merge is independent of update line-to-point provided the line
to be contracted is not a line of merging two regions. Thus, the application

Multi-VMap: a Multi-Scale Model for Vector Maps 31

of independent updates of these two types allows the transformation of all
non-feature entities into one only region bounded by exactly one point and
one line.

Thus, after two steps, each of which is formed by independent sets of
updates, map M has become an empty loop. ¤

10 Concluding Remarks

The main contribution of this paper is the introduction of a multiresolution
model for vector maps in which all extracted maps are combinatorially consis-
tent. The number of extractable maps is so high, that we can assume to have
a virtual continuum of scales between the reference map at high detail and
the base map at low detail, where detail can be variable through the domain
of the map.

The model is fully combinatorial. Once topological consistency is guaran-
teed, our next efforts will be devoted to assign geometry to entities, in a way
such that there is no any undesired intersection all over the model. In a final
step, semantics shall be considered.

The operators which are used in the multiresolution model to perform
the generalization of the map were not developed on a cartographic basis.
They were created so that spatial analysis on the resulting model could be
performed. On the basis of such operators, which ensure consistency of the
model, macro-operators must be found to translate cartographic generaliza-
tion operations into composition of atomic operators. The main applications
of the model are support to map generalisation and automated cartography,
efficient browsing over large GIS, structured solutions in wayfinding and plan-
ning, etc.

Data structures which encode the extracted map and the whole multi-scale
model, and that support the primitives indicated in 9.1, are beyond the scope
of this paper and are the subject of current work. A clear formalization and
a sound theory are essential for an efficient implementation of models.

References

1. Alexandroff, P.: Elementary Concepts of Topology. Dover Publications, New
York (1961).

2. Barr, M., Wells, C.: Category Theory for Computer Science. Prentice-Hall
(1995).

3. M. Bertolotto. Geometric modeling of spatial entities at multiple levels of res-
olution. Ph.D.Thesis, Department of Computer Science, University of Genova,
DISI-TH-1998-01, 1998.

32 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

4. Bertolotto, M., De Floriani, L., Puppo, E.: Multiresolution topological maps.
Advanced Geographic Data Modelling - Spatial Data Modelling and Query Lan-
guages for 2D and 3D Applications, M. Molenaar, S. De Hoop (eds.), Publica-
tions on Geodesy - New Series, N. 40, Netherland Geodetic Commission, pp.
179-190 (1994).

5. M. Bertolotto and M.J. Egenhofer. “Progressive transmission of vector map data
over the World Wide Web”, GeoInformatica, Vol. 5(4), 345-373, 2001.

6. B. Buttenfield. “Progressive transmission of vector data on the Internet: A car-
tographic solution”, in Proc. 19th Int. Cartographic Conf. Ottawa, Canada,
581-590, 1999.

7. Buttenfield, B.: Transmitting Vector Geospatial Data across the Internet. Sec-
ond International Conference, GIScience, Lecture Notes in Computer Science,
Springer, Berlin, pp.51-64 (2002).

8. Corbett, J.P.: Topological principles in cartography. Technical Report 48, U.S.
Bureau of Census, USA (1979).

9. De Berg, M. van Kreveld, M, Schirra, S.: Topologically Correct Subdivision Sim-
plification Using the Bandwidth Criterion. Cartography and Geographic Infor-
mation Systems, 25 (4), pp. 243-257 (1998).

10. L. De Floriani, P. Marzano and E. Puppo. “Spatial queries and data models”.
Spatial Information Theory - A theoretical basis for GIS, A.U. Frank, I. Campari
(Eds.), LNCS Vol.716, Springer-Verlag, 113-138, 1993.

11. L. De Floriani, P. Magillo. “Multiresolution mesh representation: Models
and data structures”, Tutorials on Multiresolution in Geometric Modelling,
M.Floater, A.Iske, E.Qwak (Eds.), Springer-Verlag, 363-418, 2002.

12. G. Dettori and E. Puppo. “How generalization interacts with the topological and
metric structure of maps”, in Proc. 7th Int. Symp. on Spatial Data Handling,
Delft, 9A.27-9A.38, 1996.

13. R.P. Dilworth. “A decomposition theorem for partially ordered sets”, Ann.
Math., Vol. 51, 161-166, 1950.

14. D.H. Douglas and T.K. Peucker. “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature”, The Canadian
Cartographer, 10, 2, 112-122, 1973.

15. M. Egenhofer, A. Frank, J. Jackson. “A topological data model for spatial
databases”. Proceedings of the Symposium on the Design and Implementation
of Large Spatial Databases, Santa Barbara, CA, Lecture Notes in Computer
Science, Vol. 409, 271-286, 1989.

16. Egenhofer, M.J., Clementini, E., di Felice, P.: Evaluating inconsistencies among
multiple representations. Proceedings 6th International Symposium on Spatial
Data Handling, Edinburgh, Scotland, 901-920 (1994).

17. Finke, U., Hinrichs, K.H.: The quad view data structure - A representation for
planar subdivisions. Advances in Spatial Databases, M.J. Egenhofer, J.R. Her-
ring (eds.), Lecture Notes in Computer Science, Vol.951, pp.29-46 (1995).

18. A.U. Frank, W. Kuhn. “Cell graph: a provable correct method to the storage of
geometry”. Proceedings 2nd Symposium on Spatial Data Handling (SDH’86),
Seattle, WA, pp.411-436 (1986).

19. Frank, A., Timpf, S.: Multiple representations for cartographic objects in a mul-
tiscale tree - An intelligent graphical zoom. Computers and Graphics, 18, 6, pp.
823-829 (1994).

Multi-VMap: a Multi-Scale Model for Vector Maps 33

20. C. Gotsman, S. Gumhold and L. Kobbelt. “Simplification and Compression of
3D Meshes”, in Proc. European Summer School on Principles of Multiresolution
in Geometric Modelling (PRIMUS), Munich, 2001.

21. Güting, R.H., Schneider, M.: Realms: a foundation for spatial data types in
database systems, Proceedings 3rd International Symposium on Large Spatial
Databases, Singapore, pp. 14-35 (1993).

22. Güting, R.H., Ridder, T., Schneider, M.: Implementation of the ROSE algebra:
efficient algorithms for realm-based spatial data types, Proceedings 4th Interna-
tional Symposium on Large Spatial Databases, Portland, ME, Lecture Notes in
Computer Science, 951, Springer-Verlag, pp. 216-239 (1995).

23. J. Herring. “The Mathematical Modeling of Spatial and Non-Spatial Informa-
tion in Geographic Information Systems”, in Cognitive and Linguistic Aspects
of Geographic Space, D.Mark and A.Frank (Eds.), Kluwer Academic Publishers,
pp.313-350, 1991.

24. C.B. Jones. Geographical Information Systems and Computer Cartography, Ed.
Longman, 1997.

25. Jones, C.B., Abdelmoty, A.I., Lonergan, M.E., van der Poorten, P., Zhou, S.:
Multi-Scale Spatial Database Design for Online Generalisation. Proceedings of
the 9th International Symposium on Spatial Data Handling, pp. 7b-34 7b-44,
Beijing (2000).

26. V.A. Kovalevsky. “Finite topology as applied to image analysis”, Computer
Vision, Graphics, and Image Processing, 46, 141-161, 1989.

27. Lawson, C.L.: Software for C1 surface interpolation. Mathematical Software III,
J.R. Rice (ed.), Academic Press Inc., pp. 161-164 (1977).

28. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson and R. Huebner, “Level
of Detail for 3D Graphics”, Morgan-Kaufmann, Inc., 2003.

29. A.T. Lundell and S. Weingram. The Topology of CW Complexes, Van Nostrand
Reinhol Comp., 1969.

30. M. Mantyla. An Introduction to Solid Modeling, Computer Science Press, 1987.
31. Müller, J.C., Weibel, R., Lagrange, J.P., Salge, F.: Generalization: state of the

art and issues. GIS and Generalization: Methodology and practice, J.C.Muller,
J.P.Lagrange and R.Wibel eds., Taylor and Francis, pp. 3-17 (1995).

32. Pigot, S.: Generalized singular 3-cell complexes. Proceedings 6th International
Symposium on Spatial Data Handling, Edinburgh, Scotland, pp.89-111 (1994).

33. E. Puppo and G. Dettori. “Towards a formal model for multiresolution spatial
maps”. Advances in Spatial Databases, M.J. Egenhofer, J.R. Herring (Eds.),
LNCS Vol.951, Springer-Verlag, 152-169, 1995.

34. E. Puppo. “Variable resolution triangulations”, Computational Geometry The-
ory and Applications, 11, 219-238, 1998.

35. Saalfield, A.: Comflation: automated map compilation. Technical Report CAR-
TR-670, Center for Automation Research (1993).

36. Saalfield, A.: Topologically Consistent Line Simplification with the Douglas-
Peucker Algorithm. Cartography and Geographic Information Science, 26 (1),
pp. 7-18 (1999).

37. Samet, H.: The design and analysis of spatial data structures. Addison-Wesley,
Reading, MA (1990).

38. Samet, H.: Applications of spatial data structures. Addison-Wesley, Reading,
MA (1990).

39. Spanier, E.: Algebraic Topology. McGraw-Hill, New York (1966).

34 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

40. Stell, J.G.: Granulation for Graphs. Proceedings of the International Conference
COSIT’99. Springer-Verlag Lecture Notes in Computer Science, V.1661, pp. 417-
432 (1999).

41. Stell, J.G.: The Representation of Discrete Multi-Resolution Spatial Knowledge.
Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning (KR2000). Morgan Kaufmann, pp.38-49 (2000).

42. Stell, J.G., Worboys, M.: Generalizing Graphs using Amalgamation and Selec-
tion. Proceedings of the 6th International Symposium on Advances in Spa-
tial Databases (SSD’99). Springer-Verlag Lecture Notes in Computer Science,
V.1651, pp.19-32 (1999).

43. Timpf., S.: Hierarchical Structures in Map Series. Ph. D., Technical University
Viena (1998).

44. S. Timpf and A. Franck. “A multi-scale DAG for cartographic objects”, Proc.
Auto Carto 12, Charlotte, North Caroline, USA, 157-163, 1995.

45. S. Timpf. Hierarchical Structures in Map Series, Ph.D. thesis, Technical Uni-
versity Vienna, 1998.

46. van Oosterom, P.: Reactive Data Structures for Geographic Information Systems.
Oxford University Press (1993).

47. van der Poorten, P., Zhou, S., Jones, C.B.: Topologically-Consistent Map
Generalisation Procedures and Multi-scale Spatial Databases. GISscience,
M.J.Egenhofer and D.M.Marks (eds.), pp. 209-227, Springer-Verlag Berlin Hei-
delberg (2002).

48. van Oosterom, P., Schaukelaars, V.: The development of an interactive multi-
scale GIS. International Journal of GIS, 9, 5, pp. 489-507 (1995).

49. van Putten, J., van Oosterom, P.: New Results with Generalised Area Parti-
tionings. 8th International Symposium on Spatial Data Handling, Vancouver,
International Geographical Union (1998).

50. White, M.: Technical requirements and standards for a multipurpose geographic
data system. The American Cartographer, Vol.11, N.1, pp.15-26 (1984).

51. M. Worboys. A generic model for planar geographic objects, International Jour-
nal of Geographical Information Systems, Vol.6, N.5, pp.353-372, 1992.

52. M. Worboys. GIS: A Computer Perspective, Taylor and Francis, 1995.
53. Worboys, M.F., Bokaofs, P.: A canonical model for a class of areal spatial objects.

Advances in Spatial Database (SSD93), D.Abel, B.C.Ooi (Eds.), Lecture Notes
in Computer Science, Springer-Verlag, pp.36-52 (1993).

Multi-VMap: a Multi-Scale Model for Vector Maps 35

Appendix

Proofs of Section 8

Lemma 1. Rτ is a tree.

Proof

If tree τ has 2n+1 nodes, as it is a full binary tree it will have n+1 leaves.
Besides, there will be n entities created in the updates associated to τ which
are not nodes of τ . From Definition 6, it follows that every leaf of τ is a node
of Rτ . Assuming Rτ contains i internal nodes of τ , Rτ will have 2n + 1 + i
nodes and 2n + i arcs.

We will now prove by induction on the number n of updates in τ that Rτ

is connected. If n = 1, clearly Rτ is connected. Assuming that Rτ correspond-
ing to n− 1 updates is connected, we must see that Rτ for n updates is also
connected. Let c be the node of Rτ which is split by the nth update. The two
children of c are both connected to the node representing the entity created
in the nth update that is not any of them. Let ν be an entity that was con-
nected by an arc to c before it was split. Either ν continues being univocally
incident at c, and then there will be an arc between c and the node connected
to its children, or ν is univocally incident at exactly one of the children of c. ¤

Proposition 2. Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic
refinement updates, and U ′ = (ui1 , ui2 , . . . , uih

) be a collection closed with
respect to the relation of direct dependency. Then, the output M = M ⊕ui1 ⊕
ui2 ⊕ . . .⊕ uih

of Algorithm BuildSubsequence is a map.

Proof

1. For all uij : {γd} → {(γa, γb, γc),≺}, with 1 ≤ j ≤ h, we will prove that
there is one and only one entity c′ in M representing γd, where M is the
map obtained by applying on M all updates preceding u in U ′.
a) If γd does not belong to any forest of updates, its most abstract repre-

sentative is itself. As U ′ is closed with respect to the relation of direct
dependency, γd must belong to M .

b) In case a tree τ of updates exists containing γd, let us write u : {c} →
{(c1, c2, ν), I}, according to the notation established for Rτ .
We will first see that the removal of ν, and the rest of entities described
in lines 3., 4., 5. of Procedure RepresentationProcess splits up the
representation tree containing ν into two trees. Due to Definition 6,
it can be easily shown that ν can be univocally incident at at most
two nodes of τ . Thus, by construction of the representation tree, there
can only be either two or three arcs incident at node ν. For ν having

36 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

degree three, one of the nodes i that is connected by an arc with ν
must be an internal node of τ . For i belonging to Rτ , at least another
entity univocally incident at i must exist. Let ν1 be any such entities.
We have that:
• If τ is a region-split tree, node i must be a region, and ν1 must

be a line, such that each descendant of ν1 by an update of type
line-split became incident in S at a different child of i.

• In case τ is a line-split or a line-to-region tree, a node in Rτ which
is an internal node of τ cannot exist.

• Finally, if τ is a tree of points, ν1 must be a line, and i has to be a
point, such that in S, an update of type line-to-region was applied
to ν1, and each child of ν1 became incident at a different child of
i.

In all cases, as U ′ is closed with respect to the relation of direct de-
pendency, ν1 must have been created before the update replacing i by
its children is performed. Thus, when u is to be applied, neither i, nor
the arc connecting it to ν, can belong to Rτ . Hence, there can only
be two arcs incident at ν. And when ν is removed from Rτ , it will
become split up into two trees.
Let us now see by induction on the number of updates associated
to τ that have been already applied, that for all update u : {c} →
{(c1, c2, ν), I} associated to τ which still has not been performed, there
is one and only one entity c′ in M representing c.
i. The root C of τ represents all nodes of τ .
ii. Assume n − 1 updates associated to τ have been performed, and

there is exactly one node in the map representing c. All nodes
except the one split up in the update will be clearly represented
by one of the resulting trees. When an entity univocally incident at
an internal node is inserted, although the internal node is removed
from Rτ , the node ν corresponding to the entity splitting it will
still belong to Rτ .

2. the modification of combinatorics required to apply each update of U ′ can
be univocally performed on the corresponding map.
From the definition of atomic refinement updates given in Section 4, it
follows that there are four types of updates, namely point-to-line, point-
to-region, region-split, and feature-line-addition, which are not uniquely
defined from their inverse atomic abstraction update, i.e., for which the
specification of incidence information I is necessary. The combinatorial
information that must be specified for these four types of updates belongs
to the following classes:
a) If a line l is added to M from an update of type either region-split,

or feature-line-addition then its endpoints (which must be connected
if the update is of type region-split and disconnected in case it is of
type feature-line-addition) must be specified in I;

Multi-VMap: a Multi-Scale Model for Vector Maps 37

b) The regions surrounding the new entities added to M from an update
of type either point-to-line, or point-to-region must be specified in I;

c) If an existing line l in M has (at least) one endpoint p0 that is affected
from an update of type point-to-line, then it must be specified in I to
which new point (p or p′) line l will be incident;

d) If a feature or inner boundary f belongs to a region r0 that is affected
from an update of type region-split, and when the update is applied it
remains being a feature or inner boundary respectively, then it must
be specified in I to which new region (either r or r′) f will belong.

The four classes of information only affect to two groups of entities. First,
given line l which must be either added to M (i.e., that is created in an
update of type either region-split or feature-line-addition), or that already
exists in M , but whose endpoints must change (due to the application of
an update of type point-to-line), the endpoints of l must be specified in I.
Second, given a feature or inner boundary which must be either added to
M (in case of having a feature or inner boundary created in an update of
type either point-to-line or point-to-region), or that already exists in M ,
but which must be assigned to one of the newly created regions (when
an update of type region-split is applied on M), the region which must
contain the feature or inner boundary must be specified in I.
We will first see that for each line [inner boundary or feature] appearing in
S whose endpoints [containing region] must be specified when an update
u belonging to U ′ is applied, the points [containing region] specified by the
rules to modify combinatorics, belong to the map M in which the update
has to be applied.
a) Let l be a line appearing in S univocally incident at points p1 and p2.

We must see that exactly one point representing p1 (the same for p2)
exists in map M . We know that l ∈ A(p1). Thus, either p1 is created
with l in u, or as U ′ is closed with respect to the relation of direct
dependency, the most abstract representative of p1 must have been
already created. We also know that CHILDREN(p1) ∈ D(l). Two
possibilities arise: 1) if CHILDREN(p1) = ∅, then some representa-
tive of p1 must exist in M , and 2) if CHILDREN(p1) 6= ∅, then l
must exist before p1 disappears, thus also some representative of p1

must exist in M .
If u is an update of type region-split, the two endpoints of the line to
be inserted must be connected. And if u is an update of type feature-
line-addition, the two endpoints of the line to be inserted must be
disconnected. But as U ′ is closed with respect to the relation of direct
dependency, both conditions are satisfied.
If line l does not belong to S, it will represent a set of lines in either
a line-split tree or a line-to-region tree. In both cases, assuming an
update of type point-to-line affecting the endpoints of l is applied, as
we know the lines of S represented by l, we will be able to update
combinatorics univocally.

38 R. Viaña, P. Magillo, E. Puppo and P.A. Ramos

b) Analogue. ¤

Teorema 1. Let S = (M,U = (u1, u2, . . . , uk)) be a sequence of atomic
refinement updates, and let U ′ = (ui1 , ui2 , . . . , uih

) be a collection of updates
closed with respect to the relation of direct dependency. Then, S

′
= (M,U ′ =

(ui1 , ui2 , . . . , uih
), ⊕

S
) is a feasible subsequence of S.

Proof

1. S
′
= (M,U ′ = (ui1 , ui2 , . . . , uih

),⊕
S
) is a subsequence of S.

This part has been already proven in Proposition 2.
2. S

′
is feasible.

We must prove that M = M ′, where:
• M is the map of S obtained after applying collection (u1, u2, . . . , um)

on M , with m = max {i1, . . . , ih}.
• M ′ is given by:

M ′ = M ⊕
S

ui1 ⊕S
ui2 . . .⊕

S
ui(h−1) ⊕S

uih
⊕

S

m∑

j=1

j 6=i1,...,ih

uj .

a) We will first see that M and M ′ contain the same entities. Obviously,
both maps have the same number of entities. Thus, it is sufficient to
prove that each entity of M also appears in M ′. Let b be an entity
appearing in M , created in update ub. Assume b is the most abstract
representative of itself. Then, according to rule R4 of the representa-
tion process, b ∈ M ′. If, on the contrary, b has been created in some
tree of the forests of updates, as all the ancestors of b have been al-
ready split up, and none descendant of it has been split up, b belongs
to a representation tree containing just it and all its descendants, as
we show next. Thus, b ∈ M ′.
Let us first show that if none node in the subtree Sb of b has been split
up, all the nodes in the Sb belong to the same representation tree.
We will prove it by induction on the number of nodes in τb which
have been split up. If n = 0, all nodes in τb belong to the original
representation tree Rτ . Assume now n− 1 nodes out of Sb have been
split up, and all the nodes in Sb correspond to the same representation
tree. If one more node not belonging to Sb is split up, according to
the representation process all the nodes in Sb will correspond to the
same representation tree.
Now we have to see that no any other node of τ corresponds to the
same representation tree. For each node of τ that is split up, a node ν
is created, which by Definition 6 will be univocally incident at the two
created nodes, or descendants of each of them. Thus, for some node

Multi-VMap: a Multi-Scale Model for Vector Maps 39

connecting Sb to some other node to exist, some ancestor of b should
not have been split up.

b) Finally, we must see that the configuration of entities incident at b is
the same in both M and M ′. The representation process ensures that
if b and such entity belong to the same representation tree, they will
be incident in M ′. Thus, we must only pay attention to the rules to
modify combinatorics.
i. Let b be a point. If it is isolated, it will be univocally incident at

either the region or some descendant of the region it belongs to
in M . If it is not isolated, the configuration of lines incident at it
univocally defines the configuration of regions incident at it. Let l
be any line incident at b in M . Line l belongs to M ′, and according
to the rules to specify combinatorics, the endpoints of l are the
points in M which represent the points l is univocally incident at
in S, one of which must be either b or some descendant of b.

ii. Let b be a line. The two regions it is incident at must be the
same in both M and M ′. Let r be a region incident at b in M .
If b belongs to some inner boundary or feature of r, according to
rule C2 to modify combinatorics, b will be incident at r. In case
b does not belong to any inner boundary or feature, when it was
created it was incident at some region representing r. As lines are
considered to be oriented, when the rest of updates of type region-
split affecting such region are applied, b will also be incident at r.
¤

