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Abstract

Neumann-Lara and Urrutia showed in 1985 that in any set of n points in the plane in general
position there is always a pair of points such that any circle through them contains at least n−2

60

points. In a series of papers, this result was subsequently improved till n
4.7

, which is currently the
best known lower bound. In this paper we propose a new approach to the problem that allows us,
by using known results about j-facets of sets of points in R3, to give a simple proof of a somehow
stronger result: there is always a pair of points such that any circle through them has, both inside
and outside, at least n

4.7
points.

1 Introduction

The problem that we address in this work was proposed by Neumann-Lara and Urrutia in [8], where the
following result is shown: given a set P of n points in the plane in general position – no three of them
are collinear and no four of them are cocircular – there is always a pair of points p, q ∈ P such that every
circle through p and q contains at least

⌈
n−2
60

⌉
other points of P . In a series of papers [6, 1, 5] this bound

was slightly improved and, shortly afterwards, Edelsbrunner et al. [4], by using techniques related to the
complexity of higher order Voronoi diagrams, showed a bound of (1

2 − 1√
12

)n + O(1) ≈ n
4.7 , which is the

best currently known lower bound for the problem. Regarding the upper bound, in [6] Hayward et al.
constructed a set of 4m points such that for any two of them there are circles passing through them and
containing less than m points. Therefore, this example shows that dn

4 e − 1 is an upper bound for the
problem. In the same paper, the authors study the problem for sets of points in convex position, and
give a bound of dn

3 e − 1, which is also shown to be tight. Urrutia [9] has conjectured that n
4 is, up to

perhaps an additive constant, the tight bound for the general problem.
In this note we give an alternative proof of the result by Edelsbrunner et al., transforming the problem

from circles in the plane to planes in the space. We introduce the concept of depth of a segment in a set
of points P ⊂ R3 and, by using known results about the number of j-facets, we show that there is always
a pair of points such that every circle through them has, both inside and outside, at least n

4.7 points.
Furthermore, we propose a new conjecture about the maximal number of segments with depth k that a
set of points in convex position can have, which implies a stronger version of the original conjecture.

∗Partially supported by CAM grant S-0505/DPI/0235-02. Part of this work was done while the first author was visiting
the Mathematical Sciences Research Institute.
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2 Transforming the problem

We use the well known transformation which maps the point p = (px, py) ∈ R2 to the point p̂ =
(px, py, p2

x + p2
y) ∈ R3 in the paraboloid z = x2 + y2. While the final version of this paper was being

prepared, we discovered that a similar approach has been independently used by Smorodinsky, Sulovsky,
and Wagner [10] to deal with the higher dimensional version of the problem. Among the useful properties
of this transformation (see, for instance, [3]) we will use the next one:

Observation 1. Given three non collinear points p, q, r ∈ R2, a point s is inside the circle through them
if and only if point ŝ is bellow the plane defined by p̂, q̂, r̂ ∈ R3.

Therefore, the original problem is transformed into this one: given a set of n points in the paraboloid
z = x2 +y2, show that there exist a pair of points such that any plane passing through them leaves below
at least dn

4 e − 1 points. This motivates the following definition:

Definition 1. Given a set of points P ⊂ R3 and two points p, q ∈ P , the depth of segment pq is defined
as the smallest integer k such that any plane through p and q has on each side at least k points of P .

We observe that segments with depth zero are the edges of the convex hull and we are interested in
showing that any set of points has segments with “high depth”.

We recall that, given points p, q, r ∈ P , the (oriented) triangle pqr is a j-facet of P if it has exactly j
points on the positive side of its affine hull. Therefore, if pqr is a j-facet, its edges have depth at most j.
A subset T ⊂ P is a k-set if it has k points and the sets T and P r T can be separated by a plane. The
number of j-facets of a set of points in Rd is related to the number of (j ± d)-sets and obtaining tight
bounds for these quantities, even for d = 2, is a famous open problem. The number of (≤ j)-facets is
much better understood. In order to state the result, we need some notation.

Let ej(P ) be the number of j-facets of P . It is well known ([7, 2]) that if P is a set of points in convex
position then

ej(P ) = 2(j + 1)n− 2(j + 1)(j + 2) if 0 ≤ 2j ≤ n− 4. (1)

Next we use this result to bound the number of segments with depth at most j for a set of points
in convex position. We denote by sj(P ) the number of segments of P with depth j and by Sj(P ) =∑j

i=0 si(P ) the number of segments with depth at most j.

Proposition 1. Let P ⊂ R3 be a set of n points in convex position. Then,

Sj(P ) ≤ 3(j + 1)n− 3(j + 1)(j + 2) if 0 ≤ 2j ≤ n− 4.

Proof. Let j be such that 0 ≤ 2j ≤ n − 4. We claim that if pq is a segment with depth at most j, then
it is contained in at least two j-facets of P . In order to prove the claim, consider first the case when the
depth is smaller than j and let π be an oriented plane passing through p and q and having less than j
points in the positive side (denoted π+ in Figure 1). Because in the negative side of π there are more
than dn

2 e points, if we rotate the plane around pq in a direction we find, before having rotated 180o, a
point r such that the plane π1 passing through p, q and r leaves on the positive side exactly j points of
P and, therefore, pqr (oriented conveniently) is a j-facet of P . In the same way, if we rotate plane π in
the opposite direction, we find another point s and, thus, another j-facet containing segment pq. Finally,
if the depth of pq is j, we observe that the first point that we find when the plane rotates must be in the
negative side of the plane and thus it defines a j-facet.

Because each j-facet has 3 edges, it follows that 2Sj(P ) ≤ 3ej(P ) and, from Equation 1 we get

Sj(P ) ≤ 3
2

ej(P ) = 3(j + 1)n− 3(j + 1)(j + 2) for 0 ≤ 2j ≤ n− 4.

We are ready to show the main result of this paper.
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Figure 1: Illustration for the proof of Proposition 1.

Theorem 2. In a set P ⊂ R3 of n points in convex position there exist segments with depth at least
(1

2
− 1√

12

)
n + O(1) ≈ n

4.7
.

Proof. Because n determine
(
n
2

)
segments, while Sj(P ) is smaller than

(
n
2

)
there must be segments with

depth bigger than j. Therefore, from Proposition 1 we get

3(j + 1)n− 3(j + 1)(j + 2) =
(

n

2

)
,

whose smaller solution is

j =
n− 3

2
−

( (n− 2)2 − 1
12

)1/2

=
(1

2
− 1√

12

)
n + O(1).

Finally, if we apply this result to the original problem of circles passing through pairs of points, we
obtain immediately the following result:

Corollary 3. Let P be a set of n points in the plane in general position. There always exists a pair of
points p, q ∈ P such that every circle through p and q has, both inside and outside, at least

(1
2
− 1√

12

)
n + O(1) ≈ n

4.7

points of P .

3 A new conjecture

We propose a new conjecture which has arisen during our study of this problem.

Conjecture 1. Let P ⊂ R3 be a set of n points in convex position and let sj(P ) be the number of
segments with depth j. Then,

sj(P ) ≤ 3n− 8j − 6 if 0 ≤ j ≤ dn
4 e − 1.

Of course, the result is obvious (with equality) for j = 0 and it is easy to give an almost tight bound
for j = 1:

Proposition 4. Let P ⊂ R3 be a set of n points in convex position. Then,

s1(P ) ≤ 3n− 12.
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Figure 2: Construction reaching sj(P ) = 3n− 8j − 6 for j = 0, . . . , n
4 − 1.

Proof. A segment uv has depth one if and only if it is not an edge of the convex hull of P , denoted by
conv(P ), but there exists a point p ∈ P such that uv is an edge of conv(P r {p}). If we denote by δ(p)
the number of vertices adjacent to p in conv(P ), the number of new edges in conv(P r {p}) is exactly
δ(p)− 3. Therefore,

s1(P ) ≤
∑

p∈P

(δ(p)− 3) = 3n− 12. (2)

Remark 2. The inequality in (2) is strict if there is a segment uv with depth one and points p and q such
that uv is an edge both of conv(P r {p}) and conv(P r {q}). In this situation, we say that segment uv
is generated by two points. It is easy to see that a segment with depth one cannot be generated by more
than two points. Therefore, Conjecture 1 for s1(P ) is equivalent to show that there are always at least
two segments generated by two points.

In the following we construct a set P ⊂ R3 such that sj(P ) = 3n− 8j − 6 for every j = 0, . . . , n
4 − 1,

thus showing that the bound in Conjecture 1 would be tight. The construction is inspired in that of
[6]. Consider the arc of circle C = {(x, y, z) ∈ R3 |x2 + z2 = 1, y = 0, x > 0.99} and rotate it 45o

counterclockwise around the x axis. Let n = 4m, put points Cp = {p1, . . . , pm} in C and perturb them
slightly to achieve general position. Now construct points Cq and Cr by rotating Cp around the z axis,
120o and 240o, respectively. Finally, consider the arc C ′ = {(x, y, z) ∈ R3 |x2 + z2 = 1, y = 0, z > 0.99}
and put the rest of the points, Cs = {s1, . . . , sm}, near C ′ but slightly perturbed to achieve general
position. The convex hull of P = Cp ∪ Cq ∪ Cr ∪ Cs is shown in Figure 2.a (top view) and Figure 2.b
(bottom view).

The fact that sj(P ) = 3n− 8j − 6 for j = 0, . . . , n
4 − 1 can be easily checked taking into account the

following simple observations:

– A segment s has depth j if it is in the convex hull of P r T for some j-set T and it is not in the
convex hull of P r S for any k-set S with k < j.

– Given T ⊂ P with |T | < n/4, the convex hull of P ′ = P r T has “the same structure” as conv(P ),
i.e., consecutive points in each of the chains are adjacent, the first point in C ′s is adjacent to all the
points in C ′r and C ′p, and so on.

We conclude the note stating a direct implication of the previous conjecture. Because

bn
4 c−2∑

j=0

(3n− 8j − 6) ≤
(

n

2

)
− (n + 2),
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Conjecture 1 would imply:

Conjecture 2. For every set of n points in the plane in general position, there are always n + 2 pairs of
points such that any circle through them has, both inside and outside, at least bn

4 c − 1 points.

4 Acknowledgements

We would like to thank Julian Pfeiffle for his constructions using Polymake and Boris Aronov, Imre
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