Recent developments on the crossing number of K_n Pedro Ramos

Universidad de Alcalá

Bernardo Ábrego Silvia Fernández

California State University Northridge

Oswin Aichholzer

TU Graz

David Orden

U. Alcalá

Jesús García

U Politécnica Madrid

Gelasio Salazar UA San Luis Potosí

* The crossing number of a graph G, cr(G), is the smallest number of crossings between edges in all drawings of G.

- * The crossing number of a graph G, cr(G), is the smallest number of crossings between edges in all drawings of G.
- * It is easy to see that drawings with the smallest number of crossings are good:
 - two edges share at most one point (including the vertex).
 - ★ all crossings are proper (no tangents).

- * The crossing number of a graph G, cr(G), is the smallest number of crossings between edges in all drawings of G.
- * It is easy to see that drawings with the smallest number of crossings are good:
 - two edges share at most one point (including the vertex).
 - ★ all crossings are proper (no tangents).

- * The crossing number of a graph G, cr(G), is the smallest number of crossings between edges in all drawings of G.
- * It is easy to see that drawings with the smallest number of crossings are good:
 - two edges share at most one point (including the vertex).

★ all crossings are proper (no tangents).

 $\operatorname{cr}(K_5) = 1$

The crossing number of a graph

- * Finding the crossing number of a graph is hard:
 - ★ Computing cr(G) is NP-hard.

The crossing number of a graph

- * Finding the crossing number of a graph is hard:
 - ★ Computing cr(G) is NP-hard.
 - ★ If we add a single edge e to a plane graph G, computing cr(G ∪ {e}) is also NP-hard.
 [Cabello-Mohar, 2010]

* L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .
- * Hill finds the following drawings:

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .
- * Hill finds the following drawings:

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .
- * Hill finds the following drawings:

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .
- * Hill finds the following drawings:

- * L. Beineke, R. Wilson: The early history of the brick factory problem, *Mathematical Intelligencer*, **32** (2010).
- * P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$.
- * A. Hill (c. 1958) studies the problem for K_n .
- * Hill finds the following drawings:

The number of crossings in these drawings is

$$Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

* Conjecture [Harary-Hill (1963), Guy (1962)]: $\operatorname{cr}(K_n) = Z_n$.

- * Conjecture [Harary-Hill (1963), Guy (1962)]: $\operatorname{cr}(K_n) = Z_n$.
- * Hill's construction shows that $\operatorname{cr}(K_n) \leq Z(n)$.

- * Conjecture [Harary-Hill (1963), Guy (1962)]: $\operatorname{cr}(K_n) = Z_n$.
- * Hill's construction shows that $\operatorname{cr}(K_n) \leq Z(n)$.
- * Some known results for small n:
 - $\diamond \operatorname{cr}(K_n) = Z(n) \text{ si } n \leq 10 \quad [\text{Guy, 1971}]$
 - $\Diamond n = 11, n = 12$ [Pan-Richter, 2007]

- * Conjecture [Harary-Hill (1963), Guy (1962)]: $\operatorname{cr}(K_n) = Z_n$.
- * Hill's construction shows that $\operatorname{cr}(K_n) \leq Z(n)$.
- * Some known results for small n:
 - $\diamond \operatorname{cr}(K_n) = Z(n) \text{ si } n \le 10 \quad [\text{Guy, 1971}]$

 $\Diamond n = 11, n = 12$ [Pan-Richter, 2007]

* Assymptotics:

 $\operatorname{cr}(K_n) \ge 0.8594 Z(n)$ [de Klerk-Pasechik-Schrijver, 2007]

- * Conjecture [Harary-Hill (1963), Guy (1962)]: $\operatorname{cr}(K_n) = Z_n$.
- * Hill's construction shows that $\operatorname{cr}(K_n) \leq Z(n)$.
- * Some known results for small n:
 - $\diamond \operatorname{cr}(K_n) = Z(n) \text{ si } n \le 10 \quad [\text{Guy, 1971}]$

 $\Diamond n = 11, n = 12$ [Pan-Richter, 2007]

* Assymptotics:

 $cr(K_n) \ge 0.8594 Z(n)$ [de Klerk-Pasechik-Schrijver, 2007]

* This was the situation, till a new tool was borrowed from the rectilinear case.

* The rectilinear crossing number of G, $\overline{\operatorname{cr}}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).

* The rectilinear crossing number of G, $\overline{\operatorname{cr}}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).

* For $\overline{\operatorname{cr}}(K_n)$, there is an equivalent formulation: $\Box(S)$: number of convex quadrilaterals in S.

$$\overline{\operatorname{cr}}(K_n) = \min_{|S|=n} \Box(S)$$

* The rectilinear crossing number of G, $\overline{\operatorname{cr}}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).

* For $\overline{\operatorname{cr}}(K_n)$, there is an equivalent formulation: $\Box(S)$: number of convex quadrilaterals in S.

$$\overline{\operatorname{cr}}(K_n) = \min_{|S|=n} \Box(S)$$

- Until 2004, the status of the rectilinear problem was similar to that of the general case:
 - ★ known for $n \le 10$ (case analysis). $\overline{cr}(K_{10}) = 62$ [Brodsky-Durocher-Gethner, 2001]
 - ★ upper bound: no conjecture for an optimal construction.
 - ★ lower bound: $\overline{\mathrm{cr}}(K_n) \ge 0.3001 \binom{n}{4}$

 $(Z(n) = 0.375\binom{n}{4} + O(n^3))$

- * Until 2004, the status of the rectilinear problem was similar to that of the general case:
 - ★ known for $n \le 10$ (case analysis). $\overline{cr}(K_{10}) = 62$ [Brodsky-Durocher-Gethner, 2001]
 - ★ upper bound: no conjecture for an optimal construction.
 - ★ lower bound: $\overline{\operatorname{cr}}(K_n) \ge 0.3001 \binom{n}{4}$

$$(Z(n) = 0.375 \binom{n}{4} + O(n^3))$$

 * 2004: Ábrego - Fernández-Merchant, Lovász-Vesztergombi-Wagner-Welzl
 Relation between □(S) and the number of j-edges of S.

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) *j*-edge if there are j points of S in the right halpf-plane defined by pq.

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) *j*-edge if there are j points of S in the right halpf-plane defined by pq.

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) *j*-edge if there are j points of S in the right halpf-plane defined by pq.

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) *j*-edge if there are j points of S in the right halpf-plane defined by pq.

* $e_j(S) := \# j$ -edges of S.

* If pq is a *j*-edge, then qp is a n - j - 2-edge. It is also possible to work with unoriented *j*-edges. j-edges and convex quadrilaterals (crossings)

(1)

$$* \ \, \triangle(S) + \Box(S) = \binom{n}{4}$$

* Another relation: double counting of 4-tuples $\{p, q, u, v\}$ where the ordered pair p, q leaves u to the right and v to the left.

* Another relation: double counting of 4-tuples $\{p, q, u, v\}$ where the ordered pair p, q leaves u to the right and v to the left.

six 4-tuples

* Another relation: double counting of 4-tuples $\{p, q, u, v\}$ where the ordered pair p, q leaves u to the right and v to the left.

six 4-tuples

four 4-tuples

* Another relation: double counting of 4-tuples $\{p, q, u, v\}$ where the ordered pair p, q leaves u to the right and v to the left.

six 4-tuples

four 4-tuples

*
$$6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n-j-2) e_j(S)$$
 (2)

j-edges and convex quadrilaterals (crossings)

* From this equation (and the relations $e_j = e_{n-j-2}$ and $\sum_{j=0}^{n-2} e_j = n(n-1)$) we get

$$\Box(S) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j\right)^2 e_j(S) - \frac{3}{4} \binom{n}{3}$$

j-edges and convex quadrilaterals (crossings)

* From this equation (and the relations $e_j = e_{n-j-2}$ and $\sum_{j=0}^{n-2} e_j = n(n-1)$) we get

$$\Box(S) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j\right)^2 e_j(S) - \frac{3}{4} \binom{n}{3}$$

* And considering
$$E_{\leq k}(S) = \sum_{j=0}^{k} e_j(S)$$

$$\Box(S) = \sum_{k < \frac{n-2}{2}} (n-2k-3) E_{\leq k}(S) - \frac{3}{4} \binom{n}{3} + O(n^3)$$

 \longrightarrow leading term
Lower bounds for
$$\overline{\mathrm{cr}}(K_n)$$

* [AF - LVWW, 2004] $E_{\leq k}(S) \geq 3\binom{k+2}{2}$

Lower bounds for $\overline{\operatorname{cr}}(K_n)$ * [AF - LVWW, 2004] $E_{\leq k}(S) \geq 3 \binom{k+2}{2}$ \downarrow $\overline{\operatorname{cr}}(K_n) \geq 0.375 \binom{n}{4} \approx Z(n)$

Lower bounds for
$$\overline{\operatorname{cr}}(K_n)$$

* [AF - LVWW, 2004] $E_{\leq k}(S) \geq 3 \binom{k+2}{2}$
 \downarrow
 $\overline{\operatorname{cr}}(K_n) \geq 0.375 \binom{n}{4} \approx Z(n)$

* LVWW use an improved bound for $E_{\leq k}$ (for k close to n/2), to show that

$$\overline{\operatorname{cr}}(K_n) \ge 0.37501 \binom{n}{4}$$

Lower bounds for $\overline{\operatorname{cr}}(K_n)$

* 2004 – 2011. Series of improvements on the lower bound for $E_{\leq k}(S)$.

[Balogh-Salazar], [Aichholzer-García-Orden-R.],

[Ábrego-Cetina-Fernández-Leaños-Salazar].

Lower bounds for $\overline{\operatorname{cr}}(K_n)$

* 2004 – 2011. Series of improvements on the lower bound for $E_{<k}(S)$.

[Balogh-Salazar], [Aichholzer-García-Orden-R.], [Ábrego-Cetina-Fernández-Leaños-Salazar].

* [Aichholzer-García-Orden-R. - 2005] Sets that minimize the number of convex quadrilaterals (and $\overline{\operatorname{cr}}(K_n)$) have a triangular convex hull.

Lower bounds for $\overline{\operatorname{cr}}(K_n)$

* 2004 – 2011. Series of improvements on the lower bound for $E_{<k}(S)$.

[Balogh-Salazar], [Aichholzer-García-Orden-R.], [Ábrego-Cetina-Fernández-Leaños-Salazar].

* [Aichholzer-García-Orden-R. - 2005] Sets that minimize the number of convex quadrilaterals (and $\overline{\operatorname{cr}}(K_n)$) have a triangular convex hull.

General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)
 If in the formula

$$\Box(S) = \sum_{k < \frac{n-2}{2}} (n-2k-3) E_{\leq k}(S) - \frac{3}{4} \binom{n}{3} + c_n$$

we write $3\binom{k+2}{2}$ in the place of $E_{\leq k}(S)$ we get

General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)
 If in the formula

$$\Box(S) = \sum_{k < \frac{n-2}{2}} (n-2k-3) E_{\leq k}(S) - \frac{3}{4} \binom{n}{3} + c_n$$

we write $3\binom{k+2}{2}$ in the place of $E_{\leq k}(S)$ we get

$$\sum_{k < \frac{n-2}{2}} (n-2k-3) \left\{ 3 \begin{pmatrix} k+2\\2 \end{pmatrix} - \frac{3}{4} \begin{pmatrix} n\\3 \end{pmatrix} + c_n = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
$$\prod_{Z(n)}$$

General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)
 If in the formula

$$\Box(S) = \sum_{k < \frac{n-2}{2}} (n-2k-3) E_{\leq k}(S) - \frac{3}{4} \binom{n}{3} + c_n$$

we write $3\binom{k+2}{2}$ in the place of $E_{\leq k}(S)$ we get

$$\sum_{k < \frac{n-2}{2}} (n-2k-3) \left\{ 3\binom{k+2}{2} - \frac{3}{4}\binom{n}{3} + c_n = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
$$\prod_{Z(n)}$$

* Is that a coincidence?

Consider the triangles!

 $\sigma(pqr) = +$

Consider the triangles!

$$\sigma(pqr) = +$$
$$\sigma(pqs) = -$$

Consider the triangles!

$$\sigma(pqr) = +$$
$$\sigma(pqs) = -$$

Let D be a good drawing of K_n.
We say that r is to the right of pq if pqr is oriented clockwise.

Consider the triangles!

$$\sigma(pqr) = +$$
$$\sigma(pqs) = -$$

Let D be a good drawing of K_n.
We say that r is to the right of pq if pqr is oriented clockwise.

Consider the triangles!

$$\sigma(pqr) = +$$
$$\sigma(pqs) = -$$

* Let D be a good drawing of K_n.
We say that r is to the right of pq if pqr is oriented clockwise.

* And now we can define j-edges exactly as before.

* Now we need to generalize the relation

$$6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n-j-2) e_j(S)$$

* Now we need to generalize the relation

$$6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n-j-2) e_j(S)$$

* In a good drawing of K_4 there is at most one crossing.

* Now we need to generalize the relation

$$6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n-j-2) e_j(S)$$

* In a good drawing of K_4 there is at most one crossing.

* There are three "different" drawings of K_4 .

- *j*-edges and crossings (in topological drawings)
- * There are three "different" drawings of K_4 .

- *j*-edges and crossings (in topological drawings)
- * There are three "different" drawings of K_4 .

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

3

4

2

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

17

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

* The relation between *j*-edges and crossings is the same as in the rectilinear case.

* So we have:

1.
$$|C_B| = \operatorname{cr}(D)$$
.
2. $|C_A| + |C_B| = \binom{n}{4}$.
3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n-j-2) e_j(D)$.

* So we have:

1.
$$|C_B| = \operatorname{cr}(D)$$
.
2. $|C_A| + |C_B| = \binom{n}{4}$.
3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n-j-2) e_j(D)$.

* And therefore

$$\operatorname{cr}(D) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j\right)^2 e_j(D) - \frac{3}{4} \binom{n}{3}.$$

- * So we have:
 - 1. $|C_B| = \operatorname{cr}(D)$. 2. $|C_A| + |C_B| = \binom{n}{4}$. 3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n-j-2) e_j(D)$.
- * And therefore

$$\operatorname{cr}(D) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j\right)^2 e_j(D) - \frac{3}{4} \binom{n}{3}$$

* Finally, using $(\leq k)$ -edges,

$$\operatorname{cr}(D) = \sum_{k < \frac{n-2}{2}} (n-2k-3) E_{\leq k}(D) - \frac{3}{4} \binom{n}{3} + c_n$$

j-edges and crossings

* If we could prove $E_{\leq k}(D) \geq 3\binom{k+2}{2}$, we would have $\operatorname{cr}(K_n) \geq Z(n)$.

* First try: is previous lower bound for $E_{\leq k}(D)$ true for any interesting family of drawings of K_n ?

2-page drawings

 K_6 in two pages

2-page drawings

 K_6 in two pages

crossing-free Hamiltonian cycle

2-page drawings

 K_6 in two pages

crossing-free Hamiltonian cycle

* $\nu_2(G) :=$ minimum number of crossings in any 2-page drawing of G.

 K_6 in two pages

crossing-free Hamiltonian cycle

- * $\nu_2(G) :=$ minimum number of crossings in any 2-page drawing of G.
- $* \nu_2(K_n) = Z(n)$

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

Even for 2-page drawings,
 it is not true that

$$E_{\leq k} \geq 3\binom{k+2}{2}.$$

Even for 2-page drawings,
 it is not true that

$$E_{\leq k} \geq 3\binom{k+2}{2}.$$

- * Even for 2-page drawings, it is not true that
 - is not true that $E_{\leq k} \geq 3 \binom{k+2}{2}$.

* Idea: average again, and consider ($\leq \leq k$)-edges:

$$E_{\leq\leq k} = \sum_{j=0}^{k} E_{\leq j}$$

* Even for 2-page drawings, it is not true that

 $E_{\leq k} \geq 3\binom{k+2}{2}.$

- * Idea: average again, and consider ($\leq \leq k$)-edges:

$$E_{\leq\leq k} = \sum_{j=0}^{k} E_{\leq j}$$
$$\operatorname{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq\leq k}(D) + O(n^3)$$

Optimal lower bounds

* 2-page drawings

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

Optimal lower bounds

* 2-page drawings

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

* Monotone drawings

[Balko, Fulek, Kynčl, 2013] [Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]

Optimal lower bounds

* 2-page drawings

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

* Monotone drawings

[Balko, Fulek, Kynčl, 2013] [Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]

* In the rest of the talk:

Sketch of the proof for a slightly more general family: shellable drawings.

* Convex hull of a drawing: A vertex (or an edge) is in the convex hull of a drawing D if it is visible from infinity.

* Convex hull of a drawing: A vertex (or an edge) is in the convex hull of a drawing D if it is visible from infinity.

 Convex hull of a drawing: A vertex (or an edge) is in the convex hull of a drawing D if it is visible from infinity.

1. if an edge is in the convex hull, then it is a 0-edge (the converse is not true).

 Convex hull of a drawing: A vertex (or an edge) is in the convex hull of a drawing D if it is visible from infinity.

1. if an edge is in the convex hull, then it is a 0-edge (the converse is not true).

* Convex hull of a drawing: A vertex (or an edge) is in the convex hull of a drawing D if it is visible from infinity.

- 1. if an edge is in the convex hull, then it is a 0-edge (the converse is not true).
- 2. if a vertex is in the convex hull, then it is adjacent to 2(k+1) ($\leq k$)-edges.

* The proof is by induction.

We remove point n, and call D' the corresponding drawing of K_{n-1} .

* The proof is by induction.

We remove point n, and call D' the corresponding drawing of K_{n-1} .

*
$$E_{\leq\leq k}(D) = E_{\leq\leq k-1}(D') + 2\binom{k+2}{2} + E_{\leq k}(D,D')$$

induction
hypothesis

* The proof is by induction.

We remove point n, and call D' the corresponding drawing of K_{n-1} .

*
$$E_{\leq\leq k}(D) = E_{\leq\leq k-1}(D') + 2\binom{k+2}{2} + E_{\leq k}(D,D')$$

induction
hypothesis
 j -edges adjacent
to n
 $j = 0, \dots, k$

* The proof is by induction.

We remove point n, and call D' the corresponding drawing of K_{n-1} .

* A *j*-edge of D' is an $\leq k$ -invariant edge if it is also a *j*-edge of D (for $j \leq k$).

- * Let D_{uv} be the subdrawing of D obtained when vertices $1, 2, \ldots, u-1$ and $v+1, v+2, \ldots, n$ have been removed.
- * We say that D is shellable if there exists a labelling of the vertices such that for all u < v, vertices u and v are in the convex hull of D_{uv}

- * Let D_{uv} be the subdrawing of D obtained when vertices $1, 2, \ldots, u-1$ and $v+1, v+2, \ldots, n$ have been removed.
- * We say that D is shellable if there exists a labelling of the vertices such that for all u < v, vertices u and v are in the convex hull of D_{uv}
- * Theorem: If D is a shellable drawing, then $E_{\leq\leq k}(D) \geq 3\binom{k+3}{3}$ (And therefore $\operatorname{cr}(D) \geq Z(n)$.)

Induction step:

 $D = D_{1m}$

 $D' = D_{1,m-1}$

о И

Induction step:

 $D = D_{1m}$ $D' = D_{1,m-1}$

Induction step: $D = D_{1m}$ $D' = D_{1,m-1}$

* If e is a 0-edge of $D_{u,m-1}$ adjacent to u, then e is an $\leq (u-1)$ -edge of $D_{1,m-1}$.

- * If e is a 0-edge of $D_{u,m-1}$ adjacent to u, then e is an $\leq (u-1)$ -edge of $D_{1,m-1}$.
- * Consider now edge *um*

- * If e is a 0-edge of $D_{u,m-1}$ adjacent to u, then e is an $\leq (u-1)$ -edge of $D_{1,m-1}$.
- * Consider now edge *um*
- * Sweep edges starting at u: all the edges that we find before reaching um (or half of the edges) are invariant.

- * If e is a 0-edge of $D_{u,m-1}$ adjacent to u, then e is an $\leq (u-1)$ -edge of $D_{1,m-1}$.
- * Consider now edge *um*
- * Sweep edges starting at u: all the edges that we find before reaching um (or half of the edges) are invariant.

* Invariant edges starting at *u*:

one $\leq (u - 1)$ -edge one $\leq u$ -edge \vdots one $\leq k$ -edge

k - u + 2 invariant $\leq k$ -edges starting at u.

* Invariant edges starting at u:

one $\leq (u - 1)$ -edge one $\leq u$ -edge \vdots k - u + 2 invariant $\leq k$ -edges starting at u.

one < k-edge

* Considering $u = 1, \ldots, k$, we get $E_{\leq \leq k}(D, D') \geq \binom{k+2}{2}$

* Invariant edges starting at *u*:

one $\leq (u - 1)$ -edge one $\leq u$ -edge \vdots one $\leq k$ -edge

* Considering $u = 1, \ldots, k$, we get $E_{\leq \leq k}(D, D') \geq \binom{k+2}{2}$

*
$$E_{\leq\leq k}(D) = E_{\leq\leq k-1}(D') + 2\binom{k+2}{2} + E_{\leq k}(D,D')$$

$$\downarrow$$

$$E_{\leq\leq k}(D) \geq 3\binom{k+3}{3} \longrightarrow \operatorname{cr}(D) \geq Z(n)$$

XV EGC, Sevilla 28-06-2013

A drawing is cylindrical if it contains two crossing-free cycles spanning the set of vertices.

A drawing is cylindrical if it contains two crossing-free cycles spanning the set of vertices.

A drawing is cylindrical if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen'97]

A drawing is cylindrical if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen'97]

* Optimal cylindrical drawings need not to be shellable, but previous proof can be extended to them.

Optimal cylindrical drawings

Optimal cylindrical drawings

Optimal cylindrical drawings

 $|B| \leq |R|$

- * Idea:
 - 1. process first red points.
 - 2. when we reach the blue set, red edges have been removed, and we know the configuration of green and blue ones, so we can find the invariant $\leq k$ -edges.

Conclusions

- * Two known families of optimal drawings:
 - ▷ 2-page drawings
 - ▷ cylindrical drawings

Lower bound known for those families.
Conclusions

- * Two known families of optimal drawings:
 - ▷ 2-page drawings
 - cylindrical drawings

Lower bound known for those families.

- * Open problems:
 - ▷ other families of optimal drawings?
 - ▷ prove that they are really optimal!

on the crossing out be of K_n Thank you Pedro Ramos Universidad straalaatención Universidad straalaatención Duite Gracias Abrego Silvia Fernánd

California State University Northridge

TU Graz

U. Alcalá

Jesús García

U Politécnica Madrid

Gelasio Salazar UA San Luis Potosí

