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Introduction

∗ The crossing number of a graph G, cr(G), is the smallest
number of crossings between edges in all drawings of G.

∗ It is easy to see that drawings with the smallest number of
crossings are good:
? two edges share at most one point

(including the vertex).

? all crossings are proper (no tangents).

cr(K5) = 1



XV EGC, Sevilla 28-06-20133

The crossing number of a graph

∗ Finding the crossing number of a graph is hard:

? Computing cr(G) is NP-hard.



XV EGC, Sevilla 28-06-20133

The crossing number of a graph

∗ Finding the crossing number of a graph is hard:

? Computing cr(G) is NP-hard.

? If we add a single edge e to a plane graph G,
computing cr(G ∪ {e}) is also NP-hard.
[Cabello-Mohar, 2010]
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A brief history of cr(Kn)

∗ L. Beineke, R. Wilson: The early history of the brick
factory problem, Mathematical Intelligencer, 32 (2010).

∗ P. Turán (1944) propose the problem for the bipartite
complete graph, Kn,m.

∗ A. Hill (c. 1958) studies the problem for Kn.

∗ Hill finds the following drawings:

The number of crossings in these drawings is

Z (n) :=
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋



XV EGC, Sevilla 28-06-20135

A brief history of cr(Kn)

∗ Conjecture [Harary-Hill (1963), Guy (1962)]: cr(Kn) = Zn.



XV EGC, Sevilla 28-06-20135

A brief history of cr(Kn)

∗ Conjecture [Harary-Hill (1963), Guy (1962)]: cr(Kn) = Zn.

∗ Hill’s construction shows that cr(Kn) ≤ Z(n).



XV EGC, Sevilla 28-06-20135

A brief history of cr(Kn)

∗ Conjecture [Harary-Hill (1963), Guy (1962)]: cr(Kn) = Zn.

∗ Hill’s construction shows that cr(Kn) ≤ Z(n).

∗ Some known results for small n:

♦ cr(Kn) = Z(n) si n ≤ 10 [Guy, 1971]

♦ n = 11, n = 12 [Pan-Richter, 2007]



XV EGC, Sevilla 28-06-20135

A brief history of cr(Kn)

∗ Conjecture [Harary-Hill (1963), Guy (1962)]: cr(Kn) = Zn.

∗ Hill’s construction shows that cr(Kn) ≤ Z(n).

∗ Some known results for small n:

♦ cr(Kn) = Z(n) si n ≤ 10 [Guy, 1971]

♦ n = 11, n = 12 [Pan-Richter, 2007]

∗ Assymptotics:

cr(Kn) ≥ 0.8594Z(n) [de Klerk-Pasechik-Schrijver, 2007]



XV EGC, Sevilla 28-06-20135

A brief history of cr(Kn)

∗ Conjecture [Harary-Hill (1963), Guy (1962)]: cr(Kn) = Zn.

∗ Hill’s construction shows that cr(Kn) ≤ Z(n).

∗ Some known results for small n:

♦ cr(Kn) = Z(n) si n ≤ 10 [Guy, 1971]

♦ n = 11, n = 12 [Pan-Richter, 2007]

∗ Assymptotics:

cr(Kn) ≥ 0.8594Z(n) [de Klerk-Pasechik-Schrijver, 2007]

∗ This was the situation, till a new tool was borrowed from
the rectilinear case.
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Rectilinear crossing number

∗ Until 2004, the status of the rectilinear problem was similar
to that of the general case:
? known for n ≤ 10 (case analysis).

cr(K10) = 62 [Brodsky-Durocher-Gethner, 2001]

? upper bound: no conjecture for an optimal construction.

? lower bound: cr(Kn) ≥ 0.3001
(
n
4

)
(Z(n) = 0.375

(
n
4

)
+O(n3))
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Rectilinear crossing number

∗ Until 2004, the status of the rectilinear problem was similar
to that of the general case:
? known for n ≤ 10 (case analysis).

cr(K10) = 62 [Brodsky-Durocher-Gethner, 2001]

? upper bound: no conjecture for an optimal construction.

? lower bound: cr(Kn) ≥ 0.3001
(
n
4

)
(Z(n) = 0.375

(
n
4

)
+O(n3))

∗ 2004: Ábrego - Fernández-Merchant,
Lovász-Vesztergombi-Wagner-Welzl

Relation between �(S) and the number of j-edges of S.
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there are j points of S in the right halpf-plane defined by
pq.
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j-edges

∗ Let S be a set of n points in the plane in general position.
Given p, q ∈ S, we say that pq is an (oriented) j-edge if
there are j points of S in the right halpf-plane defined by
pq.

p

q
3-edge

∗ If pq is a j-edge, then qp is a n− j − 2-edge.
It is also possible to work with unoriented j-edges.

∗ ej(S):= # j-edges of S.
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∗ Another relation: double counting of 4-tuples {p, q, u, v}
where the ordered pair p, q leaves u to the right and v to
the left.

1

2

34
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j-edges and convex quadrilaterals (crossings)

∗ M(S) +�(S) =
(
n

4

)
(1)

∗ Another relation: double counting of 4-tuples {p, q, u, v}
where the ordered pair p, q leaves u to the right and v to
the left.

1

2

34

six 4-tuples four 4-tuples

1

23

4

∗ 6M(S) + 4�(S) =
n−2∑
j=0

j(n− j − 2) ej(S) (2)

p

q

u

v
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j-edges and convex quadrilaterals (crossings)

∗ From this equation (and the relations ej = en−j−2 and∑n−2
j=0 ej = n(n− 1)) we get

�(S) =
∑

j<n−2
2

(n− 2

2
− j
)2
ej(S) −

3

4

(
n

3

)
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j-edges and convex quadrilaterals (crossings)

∗ From this equation (and the relations ej = en−j−2 and∑n−2
j=0 ej = n(n− 1)) we get

�(S) =
∑

j<n−2
2

(n− 2

2
− j
)2
ej(S) −

3

4

(
n

3

)

∗ And considering E≤k(S) =
k∑

j=0

ej(S)

�(S) =
∑

k<n−2
2

(n− 2k − 3)E≤k(S)−
3

4

(
n

3

)
+O(n3)

leading term
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Lower bounds for cr(Kn)

∗ [AF - LVWW, 2004] E≤k(S) ≥ 3

(
k + 2

2

)
⇓

cr(Kn) ≥ 0.375

(
n

4

)
≈ Z(n)

∗ LVWW use an improved bound for E≤k (for k close to
n/2), to show that

cr(Kn) ≥ 0.37501

(
n

4

)
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for E≤k(S).
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[Ábrego-Cetina-Fernández-Leaños-Salazar].
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Lower bounds for cr(Kn)

∗ 2004 – 2011. Series of improvements on the lower bound
for E≤k(S).

[Balogh-Salazar], [Aichholzer-Garćıa-Orden-R.],

[Ábrego-Cetina-Fernández-Leaños-Salazar].

∗ [Aichholzer-Garćıa-Orden-R. - 2005]

Sets that minimize the number of convex quadrilaterals
(and cr(Kn)) have a triangular convex hull.

n = 12

Optimal set

(153 convex quads)
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General (topological) drawings

∗ BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

�(S) =
∑

k<n−2
2

(n− 2k − 3)E≤k(S)−
3

4

(
n

3

)
+ cn

we write 3
(
k+2
2

)
in the place of E≤k(S) we get
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∗ BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

�(S) =
∑

k<n−2
2

(n− 2k − 3)E≤k(S)−
3

4

(
n

3

)
+ cn

we write 3
(
k+2
2

)
in the place of E≤k(S) we get

∑
k<n−2

2

(n− 2k− 3) 3

(
k + 2

2

)
− 3

4

(
n

3

)
+ cn =

1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋

=

Z(n)
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General (topological) drawings

∗ BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

�(S) =
∑

k<n−2
2

(n− 2k − 3)E≤k(S)−
3

4

(
n

3

)
+ cn

we write 3
(
k+2
2

)
in the place of E≤k(S) we get

∑
k<n−2

2

(n− 2k− 3) 3

(
k + 2

2

)
− 3

4

(
n

3

)
+ cn =

1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋

∗ Is that a coincidence?

=

Z(n)
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p

q
r Consider the triangles!

s
σ(pqr) = +

σ(pqs) = −

∗ Let D be a good drawing of Kn.
We say that r is to the right of
pq if pqr is oriented clockwise.

q

p

r



XV EGC, Sevilla 28-06-201314

j-edges in topological drawings

p

q
r Consider the triangles!

s
σ(pqr) = +

σ(pqs) = −

∗ Let D be a good drawing of Kn.
We say that r is to the right of
pq if pqr is oriented clockwise.

q

p

r

∗ And now we can define j-edges exactly as before.
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j-edges and crossings (in topological drawings)

∗ Now we need to generalize the relation

6M(S) + 4�(S) =
n−2∑
j=0

j(n− j − 2) ej(S)
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6M(S) + 4�(S) =
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∗ In a good drawing of K4 there is at most one crossing.
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j-edges and crossings (in topological drawings)

∗ Now we need to generalize the relation

6M(S) + 4�(S) =
n−2∑
j=0

j(n− j − 2) ej(S)

∗ In a good drawing of K4 there is at most one crossing.

1 2

3

4

x
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j-edges and crossings (in topological drawings)

∗ There are three “different” drawings of K4.
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1

2

3

4

1
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j-edges and crossings (in topological drawings)

∗ So we have:

1. |CB | = cr(D).

2. |CA|+ |CB | =
(
n

4

)
.

3. 6|CA|+ 4|CB | =
n−2∑
j=0

j(n− j − 2) ej(D).
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j-edges and crossings (in topological drawings)

∗ So we have:

1. |CB | = cr(D).

2. |CA|+ |CB | =
(
n

4

)
.

3. 6|CA|+ 4|CB | =
n−2∑
j=0

j(n− j − 2) ej(D).

∗ And therefore

cr(D) =
∑

j<n−2
2

(n− 2

2
− j
)2
ej(D) − 3

4

(
n

3

)
.
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j-edges and crossings (in topological drawings)

∗ So we have:

1. |CB | = cr(D).

2. |CA|+ |CB | =
(
n

4

)
.

3. 6|CA|+ 4|CB | =
n−2∑
j=0

j(n− j − 2) ej(D).

∗ And therefore

cr(D) =
∑

j<n−2
2

(n− 2

2
− j
)2
ej(D) − 3

4

(
n

3

)
.

∗ Finally, using (≤ k)-edges,

cr(D) =
∑

k<n−2
2

(n− 2k − 3)E≤k(D)− 3

4

(
n

3

)
+ cn



XV EGC, Sevilla 28-06-201319

j-edges and crossings

∗ If we could prove E≤k(D) ≥ 3

(
k + 2

2

)
, we would have

cr(Kn) ≥ Z(n).
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j-edges and crossings

∗ If we could prove E≤k(D) ≥ 3

(
k + 2

2

)
, we would have

cr(Kn) ≥ Z(n).

∗ First try: is previous lower bound for E≤k(D) true for any
interesting family of drawings of Kn?

It’s not true
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2-page drawings

K6 in two pages

∗ ν2(G) := minimum number of crossings in any 2-page
drawing of G.

1 2 3 4 5 6 crossing-free Hamiltonian
cycle
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2-page drawings

K6 in two pages

∗ ν2(Kn) = Z(n)

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

∗ ν2(G) := minimum number of crossings in any 2-page
drawing of G.

1 2 3 4 5 6 crossing-free Hamiltonian
cycle
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2-page drawings

∗ Even for 2-page drawings,
it is not true that

E≤k ≥ 3

(
k + 2

2

)
.



XV EGC, Sevilla 28-06-201321

2-page drawings

∗ Even for 2-page drawings,
it is not true that

E≤k ≥ 3

(
k + 2

2

)
.



XV EGC, Sevilla 28-06-201321
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∗ Even for 2-page drawings,
it is not true that

E≤k ≥ 3

(
k + 2

2

)
.

∗ Idea: average again, and consider (≤≤ k)-edges:

E≤≤k =
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2-page drawings

∗ Even for 2-page drawings,
it is not true that

E≤k ≥ 3

(
k + 2

2

)
.

∗ Idea: average again, and consider (≤≤ k)-edges:

E≤≤k =
k∑

j=0

E≤j

cr(D) = 2

bn/2c−3∑
k=0

E≤≤k(D) +O(n3)
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Optimal lower bounds

∗ 2-page drawings

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2012]

∗ Monotone drawings

[Balko, Fulek, Kynčl, 2013]

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]

∗ In the rest of the talk:

Sketch of the proof for a slightly more general family:
shellable drawings.
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∗ Convex hull of a drawing: A vertex
(or an edge) is in the convex hull of
a drawing D if it is visible from
infinity.
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Main ideas of the proof

∗ Convex hull of a drawing: A vertex
(or an edge) is in the convex hull of
a drawing D if it is visible from
infinity.

1. if an edge is in the convex hull, then it is a 0-edge (the
converse is not true).

2. if a vertex is in the convex hull, then it
is adjacent to 2(k + 1) (≤ k)-edges.

0-edge

0-edge
1-edge

1-edge

v
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We remove point n, and call D′ the corresponding drawing
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Main ideas of the proof

∗ The proof is by induction.

We remove point n, and call D′ the corresponding drawing
of Kn−1.

∗ E≤≤k(D) = E≤≤k−1(D
′) + 2

(
k + 2

2

)
+ E≤k(D,D

′)

induction
hypothesis

j-edges adjacent
to n

j = 0, . . . , k

invariant
≤ k-edges

∗ A j-edge of D′ is an ≤ k-invariant edge if it is also a
j-edge of D (for j ≤ k).
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Finding invariant edges

∗ Let Duv be the subdrawing of D obtained when vertices
1, 2, . . . , u− 1 and v + 1, v + 2, . . . , n have been removed.

∗ We say that D is shellable if there exists a labelling of the
vertices such that for all u < v, vertices u and v are in the
convex hull of Duv
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Finding invariant edges

∗ Let Duv be the subdrawing of D obtained when vertices
1, 2, . . . , u− 1 and v + 1, v + 2, . . . , n have been removed.

∗ We say that D is shellable if there exists a labelling of the
vertices such that for all u < v, vertices u and v are in the
convex hull of Duv

∗ Theorem: If D is a shellable drawing, then

E≤≤k(D) ≥ 3

(
k + 3

3

)
(And therefore cr(D) ≥ Z(n).)
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Finding invariant edges

Induction step:

D = D1m

D′ = D1,m−1
u

0-edge of Du,m−1

1-edge of Du,m−1

∗ If e is a 0-edge of Du,m−1 adjacent to u, then e is an
≤ (u− 1)-edge of D1,m−1.

0-edge of Du,m−1

1-edge of Du,m−1
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Finding invariant edges

Induction step:

D = D1m

D′ = D1,m−1
u

0-edge of Du,m−1

1-edge of Du,m−1

∗ If e is a 0-edge of Du,m−1 adjacent to u, then e is an
≤ (u− 1)-edge of D1,m−1.

∗ Consider now edge um

m

∗ Sweep edges starting at u: all the edges that we find before
reaching um (or half of the edges) are invariant.

0-edge of Du,m−1

1-edge of Du,m−1
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Finding invariant edges

Induction step:

D = D1m

D′ = D1,m−1
u

0-edge of Du,m−1

1-edge of Du,m−1

∗ If e is a 0-edge of Du,m−1 adjacent to u, then e is an
≤ (u− 1)-edge of D1,m−1.

∗ Consider now edge um

m

∗ Sweep edges starting at u: all the edges that we find before
reaching um (or half of the edges) are invariant.

v

0-edge of Du,m−1

1-edge of Du,m−1
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∗ Invariant edges starting at u:

one ≤ (u− 1)-edge

one ≤ u-edge

one ≤ k-edge

... } k − u+ 2 invariant ≤ k-edges
starting at u.
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Finding invariant edges

∗ Invariant edges starting at u:

one ≤ (u− 1)-edge

one ≤ u-edge

one ≤ k-edge

... } k − u+ 2 invariant ≤ k-edges
starting at u.

∗ Considering u = 1, . . . , k, we get E≤≤k(D,D
′) ≥

(
k+2
2

)
∗ E≤≤k(D) = E≤≤k−1(D

′) + 2

(
k + 2

2

)
+ E≤k(D,D

′)

E≤≤k(D) ≥ 3

(
k + 3

3

)
cr(D) ≥ Z(n)
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A drawing is cylindrical if it
contains two crossing-free cycles
spanning the set of vertices.
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Cylindrical drawings

A drawing is cylindrical if it
contains two crossing-free cycles
spanning the set of vertices.

Partial results for equal size sets
[Richter-Thomassen’97]

∗ Optimal cylindrical drawings need not to be shellable, but
previous proof can be extended to them.
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Optimal cylindrical drawings

r1 r2 r3 r4 r5 r6

b1 b2 b3

|B| ≤ |R|
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Optimal cylindrical drawings

r1 r2 r3 r4 r5 r6

b1 b2 b3

|B| ≤ |R|

∗ Idea:
1. process first red points.
2. when we reach the blue set, red edges have been

removed, and we know the configuration of green and
blue ones, so we can find the invariant ≤ k-edges.
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∗ Two known families of optimal drawings:

B 2-page drawings
B cylindrical drawings

Lower bound known for those families.
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Conclusions

∗ Two known families of optimal drawings:

B 2-page drawings
B cylindrical drawings

Lower bound known for those families.

∗ Open problems:

B other families of optimal drawings?
B prove that they are really optimal!
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Recent developments

on the crossing number of Kn

Pedro Ramos

Universidad de Alcalá

Oswin Aichholzer

TU Graz

Bernardo Ábrego Silvia Fernández

California State University
Northridge

Gelasio Salazar

UA San Luis Potośı

Thank you for your attention

Gracias por vuestra atención

David Orden

U. Alcalá

Jesús Garćıa

U Politécnica Madrid


