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COMPUTING ROUNDNESS IS EASYIF THE SET IS ALMOST ROUND�OLIVIER DEVILLERSINRIA, BP93, 06092 Sophia Antipolis, Frane.andPEDRO A. RAMOSDepartamento de Matem�atias, Universidad de Alal�aApartado de Correos 28871, Alal�a de Henares, SpainReeived 7 June 2001Revised 4 Marh 2002Communiated by P. K. AgarwalABSTRACTIn this paper we address the problem of omputing the thinnest annulus ontaining aset of points S � Rd. For d = 2, we show that the problem an be solved inO(n) expetedtime for a fairly general family of almost round sets, by using a slight modi�ation ofSharir and Welzl's algorithm for solving LP-type problems. We also show that, for pointsin onvex position, the problem an be solved in O(n) deterministi time using linearprogramming. For d = 2 and d = 3, we propose a disrete loal optimization approah.Despite the extreme simpliity and worst ase O(nd+1) omplexity of the algorithm, wegive empirial evidene that the algorithm performs very well (lose to linear time) ifthe input is almost round. We also present some theoretial results that give a partialexplanation of this behavior: although the number of loal minima may be quadrati(already for d = 2), almost round on�gurations of points having more than one loalminimum are very unlikely to be enountered in pratie.Keywords: Geometri optimization, toleraning metrology, linear programming, round-ness1. IntrodutionThe problem of omputing the thinnest annulus ontaining a given set of pointsS � R2, the so alled roundness problem, has been extensively studied. The mainmotivation for this problem omes from toleraning metrology: given an objetthat has to be tested for irularity, take a sample of points from the objet andmeasure the irularity of this sample set; then aept the objet if the irularity�A preliminary version of this paper appeared as Ref. [16℄. Part of this work has been donewhile the seond author was visiting INRIA. Partially supported by the Frenh-Spanish ollab-oration program Piasso and by grants DGES-MEC-PB98-0933, DGES-MEC-PB98-0713-C02-01and Universidad de Alal�a E041/2000. 1



is good enough and rejet it otherwise. The measure for irularity reommendedby international standards is the width of the thinnest annulus ontaining the set(see pp. 40-42 of Ref. [10℄ or p. 14 of Ref. [12℄). Despite this fat, alternativemeasures, suh as least squares �t, are used in industry, mainly beause the problemof omputing the thinnest annulus is algorithmially hallenging and the algorithmsavailable are either too slow or too ompliated.In order to summarize the long history of this problem let us mention that the�rst non-trivial observation, namely, that the enter of the optimal annulus is avertex of the diagram obtained by merging the losest and furthest point Voronoidiagrams of the set or, equivalently, that there are four points on the boundaryof the annulus, has been independently redisovered in several papers.9;17;18 Upto our knowledge, Rivlin17 is the �rst author who gives a stronger formulation ofthis result: he shows that the enter is always the intersetion of an edge of eahVoronoi diagram or, equivalently, that there are two points on the inner irle andtwo points on the outer irle of the annulus and, furthermore, points on the innerirle interlae angle-wise with points on the outer irle as seen from the enter ofthe annulus.The best asymptoti bound for the omplexity of the problem is due to Agarwaland Sharir,2 who redue the problem to a width-type problem in R3 by lifting thepoints to the unit paraboloid and give an O(n3=2+") randomized algorithm usingparametri searh and deomposition of arrangements of algebrai surfaes in R4.Beause the problem an have 
(n2) loal minima (even for sets of points in onvexposition, see Ref. [11℄), there is little hope that the omplexity an be signi�antlyimproved for non-restrited data.A promising approah to get algorithms that are useful in pratie is try tomake some assumptions on the input. As it has been pointed out by de Berg etal.,6 one of the reasons why many algorithms developed in omputational geom-etry are ompliated or slow is beause they have to be designed to handle veryompliated, hypothetial inputs. A possible way to overome this situation is tryto take advantage of additional properties of the input data that are presented insome spei� family of problems. As we shall see, the roundness problem, withsome assumptions suggested by the metrology-type input is a good example of howsuessful this strategy an be.A �rst step has been given by Mehlhorn et al. in Ref. [15℄, where the authorsderive some results using what they all theminimum quality assumption. Followinga similar idea, Gar��a et al.11 show that, if the angular order of the points aroundthe enter of the solution is given as part of the input, there is at most one loalminimum of the problem onsistent with the given order and, furthermore, it anbe omputed in O(n logn) time using a simple algorithm. In the same paper, theauthors show that, if points are in onvex position, the problem an be solved inO(n) time.More reently, Dunan et al.8 have shown that if the mean radius of the annulusis �xed, the problem is easier and an be solved in O(n logn) time while de Berget al.5 independently, have shown that the same bound holds if the inner, mean or2



outer radius of the annulus is �xed. Bose and Morin3 extend the results of Mehlhornet al.15 to the ase where the set is not onvex by making some assumptions on theinput whih are essentially equivalent to the restrited roundness hypothesis that weuse below. Devillers and Preparata7 have shown that the annulus of minimum area(whih an be omputed using linear programming) is a very good approximationof the minimum width a nnulus for almost round sets.Finally, Agarwal et al.1 and Chan4 give a variety of approximation algorithms forarbitrary dimension and Chan points out that the exat solution to the roundnessproblem in Rd an be obtained in O(nbd=2+1) time by optimizing inside a onvexpolytope in Rd+2.1.1. Our ResultsIn this paper, instead of looking for simple algorithms that give an approximatesolution to the problem, we propose simple algorithms that give the exat solu-tion for families of input sets whih are speially relevant in toleraning metrologyappliations.We will deal with almost round sets of points. Roughly speaking, we say that aset is almost round if it is ontained inside a thin annulus entered at a given point,alled the nominal enter, and we all nominal radius the distane from eah pointto the nominal enter.{ For d = 2, if we further assume a bound on the loal variation of the nominalradius (but allowing sets whih are not in onvex position), we are able toshow that the problem an be solved in O(n) expeted time with a slightmodi�ation of Sharir and Welzl's algorithm for solving LP-type problems.{ If S is a set of points in onvex position in R2, the problem an be solved inO(n) (deterministi) time using linear programming.{ For d = 2 and d = 3, we propose a disrete loal optimization method thatperforms very well (lose to linear time) in the experiments. This is, to thebest of our knowledge, the �rst pratial algorithm to get the exat solutionto the problem for d = 3. We also present some theoretial results that give apartial explanation of this behavior, showing that almost round on�gurationsof points having more than one loal minimum are quite degenerate and thusvery unlikely to be enountered in pratie.2. PreliminariesLet S = fp1; : : : ; png be a set of points in Rd and let onvS denote its onvexhull. The unit hypersphere is denoted by Sd�1 and d(p; q) is the Eulidean dis-tane between points p and q. V(S) and Vf (S) denote, respetively, the losestand furthest-point Voronoi diagrams of S. We de�ne the roundness diagram of S,denoted by RD(S), as the subdivision of the plane obtained by merging the losestand furthest-point Voronoi diagrams of S.3



The losed ball entered at  with radius r is denoted by B(; r) and the lousof points between two onentri spheres of radius r and R is alled d-annulus anddenoted A(; r; R), that is,A(; r; R) = fx 2 Rd j r � d(x; ) � R g:Finally, w = R � r and rm = (R + r)=2 are, respetively, the width and the meanradius of the annulus.Given a point x 2 Rd, we denote by N(x) and F (x) the set of nearest andfurthest neighbors of x in S. Then, the roundness funtion an be de�ned in thefollowing way: R(x) = d(x; F (x)) � d(x;N(x)):The roundness problem an be formulated now as omputing the annulus ofsmallest width ontaining S or, equivalently, �ndingR(S) = infx2RdR(x):The following theorem gives a omplete haraterization of the loal minima ofR(x) in Rd whih will be useful later:Theorem 1 (11) x0 2 Rd is a loal minimum of R(x) if, and only if, when pro-jeted onto a ommon hypersphere entered at x0, nearest and furthest neighbors ofx0 annot be separated by a hyperplane.It is worth noting that, as a onsequene, if x0 is a loal minimum of R(x), thenjN(x0)j and jF (x0)j, the number of losest and furthest neighbors of x0, satisfy theequation jN(x0)j + jF (x0)j � d+ 2, with jN(x0)j � 2 and jF (x0)j � 2. From this,it follows that loal minima are verties of the roundness diagram of S whih arenot verties of the losest or the furthest point Voronoi diagram of S. Furthermore,the result generalizes in a natural way to \points at in�nity", if we interpret ahyperplane as a hypersphere entered at in�nity, haraterizing thus the situationswhen the optimal annulus degenerates to a slab.Although the roundness funtion an have as many as 
(n2) loal minima evenfor sets of points in onvex position, Gar��a et al.11 have shown that the situationhanges drastially if we assume that the angular order of the points around theenter of the solution is known in advane.More formally, let S = fp1; : : : ; png be a labeled set of points in the plane suhthat the polygon P with verties p1; : : : ; pn is simple and de�ne the kernel of S,denoted kerS, as the lous of points from whih the points of S are seen in thegiven angular order. We point out that, if kerS 6= ;, then P is a star-shapedpolygon and kerP = kerS \ onvS.Theorem 2 (11) Inside kerS there is at most one loal minimum of R(x).In the next setion we exploit this result and show that the restrited roundnessproblem, de�ned below, an be solved in linear expeted time beause it is \almostLP-type". 4



3. The Restrited Roundness ProblemThroughout this setion, S is a set of points in the plane. Furthermore, mo-tivated by properties of the data oming from toleraning metrology appliations,we assume that points of S are sampled around a point whih is alled nominalenter, the set is ontained inside a nominal annulus entered at the nominal enterand with a given nominal width, the sample of points is well distributed around theirle and, �nally, there is a bound on the loal variation of the distane from thepoints to the nominal enter.More formally, we put the origin of the oordinate system O at the nominalenter and denote by (�i; �i) the polar oordinates of the point pi. We assume that�1 < �2 < : : : < �n and indies are understood modulo n (obviously, the expression�1��n should be understood as 2�+�1��n). Finally, we sale the problem in suha way that the mean radius of the nominal annulus is 1. We say that S satis�es theRestrited Roundness Hypothesis ifa :j�i � 1j � Æ = 0:1 (C1)�i+1 � �i � �2 (C2)j�i+1 � �ij � �i+1 � �i (C3)It is worth pointing out that ondition (C1) is referred to as theminimum qualityassumption in3, while ondition (C3) is looser than the onvexity required in15 andthe star-shape assumption in3 an be derived as a onsequene of (C3).In this setion, we deal with this restrited version of the problem, that weshall refer to as the Restrited Roundness Problem. It is worth noting that this isatually the real problem in toleraning metrology appliations, either beause wean make a minimum quality assumption on the manufaturing proess or beauseshapes that do not satisfy these assumptions an be easily rejeted.The following result guarantees that the enter of the optimal annulus is insidethe kernel of S.Lemma 1 If S satis�es the Restrited Roundness Hypothesis, there exists a uniquex0 2 R2 suh that R(S) = R(x0) and, furthermore, x0 2 B(O; 1=2) � kerS.Proof. First, we show that B(O; 1=2) � kerS. Let p and q be two onseutivepoints of S with oordinates p = (r; 0) and q = (rq os �; rq sin �) (see Figure 1.a).Let ` be the line through p and q. For a �xed value of �, d(O; `) is minimum whenr is minimum and rq is maximum and, beause of (C1) and (C3), we have r � 0:9and rq � r + �. Therefore,d(O; `) = rrq sin �qr2q + r2 � 2rrq os � � 0:9(0:9 + �) sin ��p1:81 + 0:9�aThe hoie of the onstants has been made in order to simplify the exposition and is notrestritive at all in appliations. Moreover, it an be further relaxed with some areful analysis ofthe sequel. 5
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Fig. 1. Illustration for the proof of Lemma 1.where in the last inequality we have used that 1� os � � �22 . From this, it an beeasily seen that d(O; `) � 1=2 if � < �=2.Consider now a point x at distane � from O and hoose a oordinate system insuh a way that x has oordinates (�; 0) (see Figure 1.b). Let p and q be points withoordinates (1 + Æ)(os�=4; sin�=4) and (1 � Æ)(os 3�=4; sin 3�=4), respetively.Beause of ondition (C2), there must be at least one point inside the annuluswithin eah of the angular intervals (��=4; �=4) and (3�=4; 5�=4) and, therefore,d(x; F (x)) � d(x; q) and d(x;N(x)) � d(x; p). Then, we haveR(x) = d(x; F (x)) � d(x;N(x)) � d(x; q)� d(x; p)� ��2 + (1� Æ)2 + (1� Æ)p2 � �1=2 � ��2 + (1 + Æ)2 � (1 + Æ)p2 � �1=2:If � = d(O; x) � 0:5 we have, R(x) > 0:2 � R(O) and, therefore, x is not the globalminimum of R(x). Therefore, the result follows from the ontinuity of R(x) andTheorem 2. �In order to show that the Restrited Roundness Problem an be solved in O(n)expeted time, we reall from14 the de�nition of LP -type problems, whih in thease of optimizing a funtion over a set of points an be rephrased as follows. LetS 2 Rd be a set of n points and ! : 2S ! R. We say that (S; !) is an LP -typeproblem if it satis�es the following two onditions:S1 � S2 � S ) !(S1) � !(S2) (1)S1 � S2 � S!(S1) = !(S2)p 2 S 9=;) 8<: !(S1 [ fpg) > !(S1),!(S2 [ fpg) > !(S2) (2)Conditions (1) and (2) are usually alled monotoniity and loality, respetively.A set B � S is alled a base if !(T ) < !(B) for all T ( B and B is a base of S ifit is a base and, furthermore, !(B) = !(S).In14 it is shown that if, given a base B, the operations6



{ Is !(B [ fpg) > !(B)? violation test{ Compute a base of B [ fpg base omputationan be performed in onstant time, then a all to the algorithmAlgorithm (Sharir, Welzl)funtion proedure lptype(G,T )F := T ; B := T ;for all p 2 Gr T in random order doF := F [ fpg;if !(B) < !(B [ fpg) thenB:=lptype(F ,base(B [ fpg));end if;end do;return B;of the form lptype(S; ;) omputes the solution to the problem in O(n) expetedtime (the onstant hidden in the big-O notation depends exponentially on the om-binatorial dimension of the problem, de�ned as the maximum ardinality of anybase).The Restrited Roundness Problem is not LP-type, beause the loality ondi-tion an be violated in situations when the optimal annulus is not unique. Never-theless, monotoniity is obviously satis�ed and, for the loality ondition, onsiderthe following slight modi�ation: hoose S0 � S of onstant size suh that thenominal angle between two onseutive points of S0 is at most �=2. Then, we havethat S0 � S1 � S2 � SR(S1) = R(S2)p 2 S 9=;) 8<: R(S1 [ fpg) > R(S1),R(S2 [ fpg) > R(S2)To see this, observe that S1 and S2 satisfy the Restrited Roundness Hypothesis:onditions (C1) and (C3) are obviously satis�ed and we have hosen the set S0 toguarantee ondition (C2). Let A be the thinnest annulus ontaining S2 and denoteby  its enter. We observe that from Lemma 1,  2 B(O; 1=2) � kerS2 � kerS1and sine R(S1) = R(S2), it follows from Theorem 2 that A is also the thinnestannulus ontaining S1. Therefore,R(S1 [ fpg) > R(S1), p 62 A , R(S2 [ fpg) > R(S2)We an now slightly modify Sharir and Welzl's algorithm to solve our problem:instead of proessing all points in random order, we �rst hoose a set S0 as beforeand ompute the thinnest annulus ontaining it in O(1) time. Furthermore, eahtime that a point fails to be inside the annulus and a reursive all to the algorithm7
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Fig. 2. A on�guration of six points in onvex position with two loal minima.for omputing an optimal solution with some spei� points on the boundary ismade, we also add the points of S0 to the set of points and ompute the solutionby brute fore in onstant time. The rest of the analysis of Ref. [14℄ is exatly thesame and we have:Theorem 3 The Restrited Roundness Problem in R2 an be solved in O(n) ran-domized time.Unfortunately, this approah does not seem generalizable to higher dimensionsbeause, as the next example shows, even for sets of points in onvex position in R3we an have two loal minima inside the onvex hull (and arbitrarily lose to eahother). Consider the following points given in spherial oordinates:F1 = (1:05; �2 ; 0) C1 = (0:95; �2 � "; �8 )F2 = (1:05; �2 ; �4 ) C2 = (0:95; �2 + "; 5�8 )F3 = (1:05; �2 ; 3�4 ) C3 = (r; 19�40 ; 7�8 )(" = 0:001 and r is a onstant that will be �xed later) and letS = fF1; F2; F3; C1; C2; C3g:It is easy to see that the origin of the oordinate system is a loal minimum ofR(x) suh that points C1, C2, F1, F2 and F3 are on the boundary of the annulus.Now, if we move along the z-axis (i.e. along the edge of the roundness diagramde�ned by F1, F2 and F3), we an see that the point X1 = (0; 0; 0:1) (retangularoordinates) is also a loal minimum of R(x) (the points on the boundary of theorresponding annulus are C1, C3, F1, F2 and F3) for the value of r for whihd(X1; C1) = d(X1; C3) (r � 0:955149).We observe that in the example there are four \almost oplanar" points in the�ve point set de�ning the loal minimum on�guration (points on the boundaryof the annulus). We will see (Theorem 6) that, if this is not the ase, the loalminimum de�ned by the on�guration of points an be shown to be the global8



minimum of the funtion. Beause this on�guration is quite degenerate, it is veryunlikely to be enountered in pratie. Our plan for Setion 5 is to use a loaloptimization tehnique in order to loate a loal minimum and then hek whetheror not there may be any other loal minima in a neighborhood of it.4. Roundness Using Linear ProgrammingA ommon approah in pratie to ompute the roundness of a set of pointsS = fp1; : : : ; png is to use the width of the minimum area annulus ontaining theset S as an approximation of the width of the minimum width annulus presribedby international standards. The main reason for this approah is that, as it is wellknown, the problem of omputing the annulus of minimum area an be formulatedas a linear programming problem. In order to do so, assume that pi has oordinates(xi; yi) and let (�; �), r and R be the enter, the inner and the outer radius ofthe optimal solution, respetively. Then, the problem of omputing the annulus ofminimum area ontaining S an be formulated as the optimization problem in thevariables (r; R; �; �) of� Minimize R2 � r2subjet to r2 � (xi � �)2 + (yi � �)2 � R2 for i = 1; : : : ; nIf we introdue the variables r̂ = �2 + �2 � r2R̂ = �2 + �2 �R2the problem beomes� Minimize r̂ � R̂subjet to 2�xi + 2�yi � r̂ � x2i + y2i � 2�xi + 2�yi � R̂ for i = 1; : : : ; n(MALP )whih is a linear programming problem.Let ! be the width of the minimum width annulus and !A be the width of theminimum area annulus. Devillers and Preparata7 have shown that !A is a verygood approximation of ! under the hypothesis that any setor of angle �2 from theenter of the minimum width annulus ontain at least one point. Spei�ally, if Rdenotes the outer radius of the minimum width annulus, then!A � ! + 3!2R :However, the situation in pratie seems to be even better, in the sense that, asreported in16, the solution to both problems appears to be exatly the same inmost ases. In the remainder of this setion we give an explanation of the frequentoinidene of the minimum width annulus and minimum area annulus for pointsets.The vertial distane between two parallel planes �i � z = �x+�y+i (i = 1; 2)is dv(�1; �2) = j1 � 2j and the problem of �nding the vertial width of a set9



S = fp1; : : : ; png � R3 is the problem of �nding the pair of parallel planes ontainingS with minimum vertial distane. The problem an be solved in O(n) time beauseit is a linear programming problem in the variables (�; �; 1; 2):� Minimize 2 � 1subjet to �xi + �yi + 1 � zi � �xi + �yi + 2 for i = 1; : : : ; n (VW)If we ompare (MALP ) and (VW), we easily realize that:Remark 1 Computing the minimum area annulus of a set S � R2 is equivalent toomputing the vertial width of the set Ŝ � R3 obtained by lifting S to the paraboloidz = 12 (x2 + y2).In the next result, we give a ombinatorial haraterization of the solution tothe vertial width problem. We onsider points in general position (no three pointson a vertial plane) but the proof an be easily extended to the general ase.Given two non-vertial parallel planes enlosing S, we denote by U and L thesets of points on the upper and lower planes, respetively. Then we have:Lemma 2 A pair of non-vertial parallel planes de�nes the solution of (VW) if,and only if, U and L annot be separated by a vertial plane.Proof. Consider a pair of non-vertial parallel planes z = �x+�y+i (i = 1; 2)enlosing S and denote by (xi; yi; zi) the oordinates of point pi . Then,L = fpi 2 S j zi � �xi � �yi = 1gU = fpi 2 S j zi � �xi � �yi = 2gIf points in U and L an be separated by a vertial plane, there exist a; b;  2 Rand � > 0 suh that axi+ byi+  � � for pi 2 U while axi+ byi+  � �� for pi 2 L.Then, for " > 0 small enough, the planes �l : z = (�+"a)x+(�+"b)y+1+"(+�)and �u : z = (�+ "a)x+(�+ "b)y+2+ "(��) ontain S and its vertial distaneis 2 � 1 � 2"�.Conversely, if the on�guration is not the minimum, then there exist a; b; 1; 2suh that axi + byi + 1 � zi � axi + byi + 2 for all p 2 S and 2 � 1 < 2 � 1.In partiular, for pi 2 L we have (a � �)xi + (b � �)yi � 1 � 1 while for pi 2 Uwe have (a � �)xi + (b � �)yi � 2 � 2. Beause 2 � 1 < 2 � 1, we have that1�1 < 2�2 and onlude that points of U and L an be separated by a vertialplane. �From this result and Remark 1, we have derived the following ombinatorialharaterization of the optimal on�guration for the minimum area annulus.Theorem 4 A is the annulus of minimum area ontaining the set S if, and onlyif, S � A and points on the inner irle and points on the outer irle of A annotbe separated by a line.This result an be used to show that, under ertain onditions, the annulusof minimum area and minimum width are the same and thus the solution to theminimum width problem an be found in O(n) time.Theorem 5 Let S = fp1; : : : ; png � R2 be a set of points in onvex position. Ifthere is an annulus of minimum width ontaining S with enter stritly inside kerS,then it an be omputed in O(n) time using linear programming.10
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Fig. 3. Examples of loal minima on�gurations.Proof. We observe that, if S is in onvex position, loally minimal on�g-urations for the minimum width problem and for the minimum area problem arethe same when the enter of the annulus is an interior point of kerS. Therefore, ifthere is an annulus of minimum width ontaining S with enter stritly inside kerS,then it is also the annulus of minimum area ontaining S and it an be omputedin O(n) time using linear programming. �In Figure 3 we show two examples where the minimum width annulus and min-imum area annulus ontaining S do not oinide. The minimum area annulus isshaded and points on its boundary are labeled a while the minimum width annulusis drawn with dotted lines and points on its boundary are labeled w (points on theboundary of both annuli are labeled aw).We onlude the setion observing that Theorem 4 an be easily generalizedto higher dimensions and, as pointed out by Devillers and Preparata7, minimizingR2 � r2 is a very good approximation of minimizing R � r in arbitrary dimen-sion. However, Theorem 5 annot be generalized to higher dimensions beause, asFigure 2 shows, for d � 3 there is no uniqueness of loal minima inside onvS.5. A Disrete Loal Optimization ApproahConsider a point x0 2 Rd and a unitary vetor v 2 Rd. We denote by nv thesmallest angle de�ned by v and vetors x0p for p 2 N(x0). Similarly, we denoteby fv the largest angle de�ned by v and vetors x0p for p 2 F (x0). Let pn and pfdenote, respetively, the points that de�ne nv and fv (see Figure 4). It is easy tosee that these points are, for � > 0 small enough, the nearest and furthest neighborsof x0 + �v.Furthermore, from Taylor expansion we have thatR(x0 + �v) = d(x0 + �v; pf )� d(x0 + �v; pn) = R(x0) + �(osnv � os fv) + o(�):We reall that the roundness diagram of S, denoted by RD(S), is obtained bymerging the losest and furthest-point Voronoi diagram of S. Using this terminol-11
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Fig. 4. Illustration for the de�nitions of Setion 5.ogy, Theorem 1 an be restated as follows: x0 is a loal minimum of R(x) if, andonly if, x0 is a vertex of RD(S) suh that, for every v 2 Sd�1 it holdsosnv � os fv > 0: (1)Of ourse, this quantity is just the diretional derivative of R(x) if the funtionis smooth, but our plan is to travel along the edges of RD(S), where diretionalderivatives of R(x) do not exist. Therefore, we de�ne the lateral diretional deriva-tive Dv+R(x0) = lim�!0+ R(x0 + �v) �R(x0)� = osnv � os fv:The algorithm follows the idea of loal optimization but, instead of moving alongthe diretion of steepest desent of the funtion, we move along the edge of RD(S)whih minimizes Dv+R until a new vertex of the roundness diagram is reahed.Beause we do not ompute RD(S) expliitly, in eah step we have to omputethe edges of the diagram starting at the given vertex and the derivative of thefuntion in the diretion of eah edge. We shall see that if x0 is a loal minimum ofthe roundness funtion, Dv+R is minimized when v is the diretion of an edge ofRD(S) (in this ase, the minimum is bigger than zero), but this is not neessarilythe ase if x0 is not a loal minimum. Therefore, instead of hoosing the diretionof steepest desent and proeeding along a diretion whih is not an edge of RD(S),we prefer to keep traveling on the diagram and take advantage of the disrete natureof the problem. In this way, in eah step we advane \as muh as we an" and thevalue of the funtion always dereases. Although the algorithm works for arbitrarydimensions, in the rest of the paper we onentrate on d = 2 and d = 3, whih arethe ases of pratial interest in toleraning metrology appliations.
12



The algorithm is extremely simple and an be desribed as follows:Input A set of points S and a nominal enter .Output A loal minimum of R(x).beginStep 1 From , move to a vertex of RD(S).General step While the vertex is not a loal minimum, ompute the inidentedge of RD(S) whih minimizes Dv+R and move to the otherinident vertex.endStep 1 an be trivially performed in O(n) time and, beause we do not omputeany Voronoi diagram, eah iteration of the General step also takes linear time.Therefore, the worst ase omplexity of the algorithm is O(Kn), where K is thenumber of verties of the roundness diagram that are visited during the proess.For d = 2, K = �(n2), leading to a ubi algorithm, and the omplexity is bigger ford = 3. However, in the experiments that will be presented in the next setion wean see that K grows very slowly with n and thus the omplexity of the algorithm\in pratie" is lose to linear.In the rest of this setion, we study onditions that guarantee that the loalminimum that we reah with the algorithm is the global minimum of the funtion.We are going to look more losely at the loal minimum on�gurations to showthat ases that allow another nearby loal minimum are very unlikely to be enoun-tered in pratie. More importantly, the onditions an be heked one the loalminimum has been reahed in order to guarantee that we have found the globalminimum of the problem.We are going to make two assumptions on the input:(A1) S � A(O; 1� Æ; 1 + Æ) for Æ = 0:05.(A2) There is at least one point of S inside any one with apex at O and angle� = �=5.Assumption (A1) is analogous to (C1) for the Restrited Roundness Problemand assumption (A2) is similar to (C2) and prevents \big holes" in the set S. Byusing the same ideas as in the proof of Lemma 1, it an be shown that the loalminimum found by the algorithm is inside B(O; 0:1). If we identify Sd�1 with theset of unitary vetors in Rd, a suÆient ondition for the loal minimum foundby the algorithm to be the global minimum of the problem an be stated in thefollowing way:Theorem 6 Let x0 2 B(O; 0:1) be a loal minimum of R(x) and denote R(x0) = .We de�ne m = minv2Sd�1Dv+R(x0) = minv2Sd�1(osnv � os fv):13



If m > 2, then x0 is the global minimum of R(x).Proof. We observe that from the haraterization of the loal minima of theroundness funtion, we have m > 0. Furthermore, R(x0 + �v) > R(x0) for � > 0small enough. We are going to show that this inequality holds for any � > 0 ifm > 2.Let pn and pf be, respetively, the nearest and furthest neighbors of x0 deter-mining the angles nv and fv with v and onsider R�(x0 + �v) = d(x0 + �v; pf )�d(x0 + �v; pn). We observe that R(x0 + �v) � R�(x0 + �v).If we denote by r the inner radius of the annulus, the non-zero solution of theequation R�(x0 + �v) = R(x0)is �0 = 2 r (r + )(osnv � os fv)2 � ( os fv � r(osnv � os fv))2 : (2)Beause the numerator of (2) is always positive we have that, if �0 is positive,�0 � 2 r(r + ) (osnv � os fv) � 2 r�1 + r �m > 2r(r + ): (3)Therefore, we haveR(x0 + �v) � R�(x0 + �v) >  = R(x0) if 0 < � � 2r(r + ):On the other hand, from assumption (A2) and following the same idea as in theproof of Lemma 1, if we denote K = os(�=10) then we an writeR(x0 + �v) � pr2 + �2 + 2�rK �p(r + )2 + �2 � 2�rK:Therefore, (R(x0 + �v))2 � 22 � A�Bwhere A = r2 + �2 + rB = �(r2 + �2)2 � 4�2r2K2 + (2r + )(r2 + �2 + 2�rK�1=2:A straightforward omputation shows thatA2 �B2 � ��(7r22 � 2)�� (4r + 2)r� = �E1(�):Beause E1(�) inreases with �, in order to show that A� B � 0 if � > 2r2, it isenough to see thatE1(2r2) = r�7r3 � (4 + 22)r � 2� = rE2() � 0;and this follows from the fats that E2() dereases with  and thatE2(0:1) = 7r3 � 4:02r� 2 � 014
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Fig. 5. Illustration for the proof of Proposition 1.beause r > 0:85. �In order to get a geometri interpretation of minv2Sd�1 Dv+R(x0) (and to om-pute it easily), we prove the following:Proposition 1 If x0 is a loal minimum of R(x), then minv2Sd�1 Dv+R(x0) isahieved when v is the diretion of an edge of the roundness diagram of S inidentto x0.Proof. Without loss of generality, we an assume that x0 is the origin of theoordinate system. First, we onsider the ase d = 2. If v is not parallel to an edgeof the roundness diagram inident to x0, then there is a unique point pn 2 N(x0)determining an angle nv with v (as in Figure 5.a) and analogously for pf and fv.Therefore, we an slightly move v towards pnpf thus dereasing osnv � os fv.For d = 3, if v is not parallel to a fae of the roundness diagram inident to x0,then we an repeat the argument of the previous paragraph. Finally, assume thatv is parallel to a fae but not to an edge of the roundness diagram inident to x0.Then, either v is parallel to the bisetor plane of the points in F (x0) and is notparallel to the bisetor plane of the points in N(x0), or the opposite. Assume thatwe are in the former situation, the latter one an be handled in an analogous way.In this situation, there are two points pf1; pf2 2 F (x0) determining an angle fvwith v and one point pn 2 N(x0) determining an angle nv with v. Let f1, f2 andn1 be the projetions of pf1, pf2 and pn, respetively, on the unit sphere enteredat x0 (see Figure 5.b). Then, v is onstrained to the maximal irle C de�ned bythe intersetion of the plane x � f1f2 = 0 with the unit sphere. Let �� denote theirle intersetion of the plane x � f11 = �with the unit sphere. Beause x0 is a loal minimum,osnv � os fv = v � f11 = �0 > 0and furthermore ��0 intersets (or is tangent to) C and grows when �0 diminishes,we an onlude that v is not a loal minimum of Dv+R(x0). �15
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Fig. 6. x0 is a loal minimum but the global minimum is x1.It is worth noting that this result is not true if x0 is not a loal minimum.In these ases, the minimum of Dv+R(x0) an be determined by only two points.Therefore, the diretion of steepest desent of the funtion does not always oinidewith an edge of the roundness diagram, and the proposed algorithm is not equivalentto the lassial loal optimization approah.We an see now why loal minima of the roundness funtion of almost roundsets whih are not the global minima are unlikely to be enountered in pratie.If x0 is a loal minimum of the roundness funtion and the set is almost round,Theorem 6 and Proposition 1 state that x0 an only fail to be the global minimumof the funtion if there exists an edge of the roundness diagram inident to x0 withdiretion v and suh that nv ' fv. Then, it is neessary that:{ For d = 2 we have three out of the four points de�ning the loal minimum nearthe boundary of a one and, therefore, two points of the loal minimum on-�guration are \almost ollinear" with x0. In Figure 6, x0 is a loal minimumwith points p1, p2, q1 and q2 on the boundary of the annulus (they alternateangularly) but the global minimum is x1 and points on the boundary of theglobally optimal annulus are p1, p3, q1 and q3.{ For d = 3 we have four out of the �ve points de�ning the loal minimum nearthe boundary of a one and, therefore, there are four \almost oplanar" pointsin the on�guration de�ning the loal minimum.6. Experimental ResultsWe have done experiments with two kinds of input data:{ For d = 2, with some data provided by the National Institute of Standardsand Tehnology (NIST) whih imitates a variety of error patterns that ourin pratie. 16



Set wn w (wn � w)=w it. wa (wa � w)=wS1 0.017888 0.017811 0.00429 1 0.017929 0.00663S2 0.017744 0.017644 0.00567 1 0.017717 0.00418S3 0.001990 0.001975 0.00754 1 0.001986 0.00602S4 0.009976 0.009945 0.00317 2 0.010088 0.01443S5 0.006985 0.006666 0.04776 2 0.006933 0.04006S6 0.006959 0.006720 0.03557 6 0.006752 0.00477S7 0.017870 0.002009 7.89088 10 0.002114 0.05236Table 1. Results on data simulating frequent error patterns in metrology ap-pliations. Starting at the seond olumn we have the nominal width, the realwidth, the relative error, the number of iterations performed by the algorithm,the algebrai width of the set (de�ned below) and the relative error betweenalgebrai width and real width.{ Both for d = 2 and d = 3 with data randomly generated inside the annulusA(O; 1� e; 1 + e) for e = 10�i and i = 1; 2; 3; 4.Table 1 shows the results of the �rst experiment. S1; : : : ; S7 are samples of800 points with nominal enter at the origin and nominal radius 1. In the seondolumn we have the nominal width, i.e. wn = R(O), and in the third olumnthe loal minimum obtained for the algorithm starting at the nominal enter. Inall these ases, the omputed loal minimum an be guaranteed to be the globalminimum of the funtion by a diret appliation of Theorem 6. The fourth olumnshows the relative improvement over the nominal width and the �fth the numberof iterations of the algorithm (i.e. the number of verties of the roundness diagramthat are visited during the proedure). If a good hoie of the nominal enter hasbeen made (S1; : : : ; S4), then already the �rst or the seond vertex of the roundnessdiagram is the solution to the problem. Only when a very poor hoie of the nominalenter is made (S7) the number of iterations grows a little bit. Finally, the sixtholumn shows the algebrai width of the set, whih is an alternative measure usedin industry. For omputing the algebrai width, we minimizenXi=1((d(X; pi))2 � r2)in the variables (X = (x; y); r), whih an be transformed into a linear least squares�t. Now, if Xa is the algebrai enter (solution to the problem), the algebrai widthis wa = R(Xa). We an see in the table how poor this solution an be (in someases, even worst than the nominal width). Finally, it is worth noting that, in allthese ases, the minimum area annulus is exatly the same as the minimum widthannulus.For the randomly generated data, we have omputed the average of 20 iterationsof the algorithm for sets of 500; 1000; 2000; : : : ; 10000 points. As a starting pointfor the algorithm, we have hosen a random point x 2 B(O; 0:1) with the aimof measuring the omplexity of the roundness diagram in a neighborhood of thesolution (if the origin is hosen as a starting point, the number of the iterations17
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pointsFig. 7. Number of iterations for randomly generated data (d=2).does not seem to grow with n). The results are shown in Figure 7 and Figure 8 ford = 2 and d = 3 respetively.As should be expeted, the number of iterations grows with the dimensionand also if the nominal width of the sample diminishes. However, the behavioris learly sublinear and, therefore, the performane of the algorithm in pratie issubquadrati.
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pointsFig. 8. Number of iterations for randomly generated data (d=3).7. Final RemarksWe onlude with some diretions of researh suggested by the work:� The tehniques used in this paper ould be extended to deal with sets in theshape of a irular ar or a spherial ap.� The main drawbak of the minimum width annulus is that it is very sensitive to18
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