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ABSTRACT

In this paper we address the problem of computing the thinnest annulus containing a
set of points S C R?. For d = 2, we show that the problem can be solved in O(n) expected
time for a fairly general family of almost round sets, by using a slight modification of
Sharir and Welzl’s algorithm for solving LP-type problems. We also show that, for points
in convex position, the problem can be solved in O(n) deterministic time using linear
programming. For d = 2 and d = 3, we propose a discrete local optimization approach.
Despite the extreme simplicity and worst case O(nd+1) complexity of the algorithm, we
give empirical evidence that the algorithm performs very well (close to linear time) if
the input is almost round. We also present some theoretical results that give a partial
explanation of this behavior: although the number of local minima may be quadratic
(already for d = 2), almost round configurations of points having more than one local
minimum are very unlikely to be encountered in practice.

Keywords: Geometric optimization, tolerancing metrology, linear programming, round-
ness

1. Introduction

The problem of computing the thinnest annulus containing a given set of points
S C R?, the so called roundness problem, has been extensively studied. The main
motivation for this problem comes from tolerancing metrology: given an object
that has to be tested for circularity, take a sample of points from the object and
measure the circularity of this sample set; then accept the object if the circularity

*A preliminary version of this paper appeared as Ref. [16]. Part of this work has been done
while the second author was visiting INRIA. Partially supported by the French-Spanish collab-
oration program Picasso and by grants DGES-MEC-PB98-0933, DGES-MEC-PB98-0713-C02-01
and Universidad de Alcald E041/2000.



is good enough and reject it otherwise. The measure for circularity recommended
by international standards is the width of the thinnest annulus containing the set
(see pp. 40-42 of Ref. [10] or p. 14 of Ref. [12]). Despite this fact, alternative
measures, such as least squares fit, are used in industry, mainly because the problem
of computing the thinnest annulus is algorithmically challenging and the algorithms
available are either too slow or too complicated.

In order to summarize the long history of this problem let us mention that the
first non-trivial observation, namely, that the center of the optimal annulus is a
vertex of the diagram obtained by merging the closest and furthest point Voronoi
diagrams of the set or, equivalently, that there are four points on the boundary
of the annulus, has been independently rediscovered in several papers.”!”18 Up
to our knowledge, Rivlin!” is the first author who gives a stronger formulation of
this result: he shows that the center is always the intersection of an edge of each
Voronoi diagram or, equivalently, that there are two points on the inner circle and
two points on the outer circle of the annulus and, furthermore, points on the inner
circle interlace angle-wise with points on the outer circle as seen from the center of
the annulus.

The best asymptotic bound for the complexity of the problem is due to Agarwal
and Sharir,? who reduce the problem to a width-type problem in R? by lifting the
points to the unit paraboloid and give an O(n®/?**) randomized algorithm using
parametric search and decomposition of arrangements of algebraic surfaces in R*.
Because the problem can have Q(n?) local minima (even for sets of points in convex
position, see Ref. [11]), there is little hope that the complexity can be significantly
improved for non-restricted data.

A promising approach to get algorithms that are useful in practice is try to
make some assumptions on the input. As it has been pointed out by de Berg et
al.,% one of the reasons why many algorithms developed in computational geom-
etry are complicated or slow is because they have to be designed to handle very
complicated, hypothetical inputs. A possible way to overcome this situation is try
to take advantage of additional properties of the input data that are presented in
some specific family of problems. As we shall see, the roundness problem, with
some assumptions suggested by the metrology-type input is a good example of how
successful this strategy can be.

A first step has been given by Mehlhorn et al. in Ref. [15], where the authors
derive some results using what they call the minimum quality assumption. Following
a similar idea, Garcia et al.'! show that, if the angular order of the points around
the center of the solution is given as part of the input, there is at most one local
minimum of the problem consistent with the given order and, furthermore, it can
be computed in O(nlogn) time using a simple algorithm. In the same paper, the
authors show that, if points are in convex position, the problem can be solved in
O(n) time.

More recently, Duncan et al.® have shown that if the mean radius of the annulus
is fixed, the problem is easier and can be solved in O(nlogn) time while de Berg
et al.’ independently, have shown that the same bound holds if the inner, mean or



outer radius of the annulus is fixed. Bose and Morin® extend the results of Mehlhorn
et al.!® to the case where the set is not convex by making some assumptions on the
input which are essentially equivalent to the restricted roundness hypothesis that we
use below. Devillers and Preparata” have shown that the annulus of minimum area
(which can be computed using linear programming) is a very good approximation
of the minimum width a nnulus for almost round sets.

Finally, Agarwal et al.' and Chan? give a variety of approximation algorithms for
arbitrary dimension and Chan points out that the exact solution to the roundness
problem in R? can be obtained in O(nl%/2/+1) time by optimizing inside a convex
polytope in R4+2.

1.1. Our Results

In this paper, instead of looking for simple algorithms that give an approximate
solution to the problem, we propose simple algorithms that give the ezact solu-
tion for families of input sets which are specially relevant in tolerancing metrology
applications.

We will deal with almost round sets of points. Roughly speaking, we say that a
set is almost round if it is contained inside a thin annulus centered at a given point,
called the nominal center, and we call nominal radius the distance from each point
to the nominal center.

— For d = 2, if we further assume a bound on the local variation of the nominal
radius (but allowing sets which are not in convex position), we are able to

show that the problem can be solved in O(n) expected time with a slight
modification of Sharir and Welzl’s algorithm for solving LP-type problems.

— If S is a set of points in convex position in R?, the problem can be solved in
O(n) (deterministic) time using linear programming.

— For d = 2 and d = 3, we propose a discrete local optimization method that
performs very well (close to linear time) in the experiments. This is, to the
best of our knowledge, the first practical algorithm to get the exact solution
to the problem for d = 3. We also present some theoretical results that give a
partial explanation of this behavior, showing that almost round configurations
of points having more than one local minimum are quite degenerate and thus
very unlikely to be encountered in practice.

2. Preliminaries

Let S = {pi,...,pn} be a set of points in R? and let conv S denote its convex
hull. The unit hypersphere is denoted by S%~' and d(p,q) is the Euclidean dis-
tance between points p and ¢. V.(S) and V;(S) denote, respectively, the closest
and furthest-point Voronoi diagrams of S. We define the roundness diagram of S,
denoted by RD(S), as the subdivision of the plane obtained by merging the closest
and furthest-point Voronoi diagrams of S.



The closed ball centered at ¢ with radius r is denoted by B(c,r) and the locus
of points between two concentric spheres of radius » and R is called d-annulus and
denoted A(c,r, R), that is,

Ale,r,R) ={z € R*|r <d(z,c) < R}.

Finally, w = R — r and r,, = (R + r)/2 are, respectively, the width and the mean
radius of the annulus.

Given a point z € R?, we denote by N(z) and F(z) the set of nearest and
furthest neighbors of z in S. Then, the roundness function can be defined in the
following way:

R(z) = d(z, F(z)) — d(z, N(z)).

The roundness problem can be formulated now as computing the annulus of
smallest width containing S or, equivalently, finding

R(S) = inf R(x).

(8) = inf R()
The following theorem gives a complete characterization of the local minima of

R(z) in R? which will be useful later:

Theorem 1 (') 29 € R? is a local minimum of R(z) if, and only if, when pro-
jected onto a common hypersphere centered at xo, nearest and furthest neighbors of
xp cannot be separated by a hyperplane.

It is worth noting that, as a consequence, if zg is a local minimum of R(z), then
|N(z0)| and |F(zo)|, the number of closest and furthest neighbors of z, satisfy the
equation |N(zo)| + |F(zo)| > d + 2, with [N (zg)| > 2 and |F(zo)| > 2. From this,
it follows that local minima are vertices of the roundness diagram of S which are
not vertices of the closest or the furthest point Voronoi diagram of S. Furthermore,
the result generalizes in a natural way to “points at infinity”, if we interpret a
hyperplane as a hypersphere centered at infinity, characterizing thus the situations
when the optimal annulus degenerates to a slab.

Although the roundness function can have as many as Q(n?) local minima even
for sets of points in convex position, Garcia et al.'! have shown that the situation
changes drastically if we assume that the angular order of the points around the
center of the solution is known in advance.

More formally, let S = {p1,...,pn} be a labeled set of points in the plane such
that the polygon P with vertices p1,...,p, is simple and define the kernel of S,
denoted ker S, as the locus of points from which the points of S are seen in the
given angular order. We point out that, if kerS # 0, then P is a star-shaped
polygon and ker P = ker S N conv S.

Theorem 2 (') Inside ker S there is at most one local minimum of R(x).

In the next section we exploit this result and show that the restricted roundness
problem, defined below, can be solved in linear expected time because it is “almost
LP-type”.



3. The Restricted Roundness Problem

Throughout this section, S is a set of points in the plane. Furthermore, mo-
tivated by properties of the data coming from tolerancing metrology applications,
we assume that points of S are sampled around a point which is called nominal
center, the set is contained inside a nominal annulus centered at the nominal center
and with a given nominal width, the sample of points is well distributed around the
circle and, finally, there is a bound on the local variation of the distance from the
points to the nominal center.

More formally, we put the origin of the coordinate system O at the nominal
center and denote by (p;,8;) the polar coordinates of the point p;. We assume that
01 < 62 < ... <8, and indices are understood modulo n (obviously, the expression
61 — 6, should be understood as 27w +6; —6,,). Finally, we scale the problem in such
a way that the mean radius of the nominal annulus is 1. We say that S satisfies the
Restricted Roundness Hypothesis if®:

pi—1<6=01 (C1)
fiv1 — 0; < g (C2)
lpit1 = pil < biz1—0; (C3)

It is worth pointing out that condition (C1) is referred to as the minimum quality
assumption in®, while condition (C3) is looser than the convexity required in'® and
the star-shape assumption in® can be derived as a consequence of (C3).

In this section, we deal with this restricted version of the problem, that we
shall refer to as the Restricted Roundness Problem. It is worth noting that this is
actually the real problem in tolerancing metrology applications, either because we
can make a minimum quality assumption on the manufacturing process or because
shapes that do not satisfy these assumptions can be easily rejected.

The following result guarantees that the center of the optimal annulus is inside
the kernel of S.

Lemma 1 If S satisfies the Restricted Roundness Hypothesis, there exists a unique
xo € R? such that R(S) = R(xo) and, furthermore, zo € B(0,1/2) C ker S.

Proof. First, we show that B(0O,1/2) C ker S. Let p and ¢ be two consecutive
points of S with coordinates p = (r,0) and ¢ = (ry cosf,r,siné) (see Figure 1.a).
Let £ be the line through p and ¢. For a fixed value of 6, d(O, ¢) is minimum when
r is minimum and r, is maximum and, because of (C1) and (C3), we have r > 0.9
and r; < r 4 6. Therefore,

rry siné S 0.9(0.9+6)sind

4(0,0) = >
\/7‘3 + 12 — 277, cos b 6+/1.81 + 0.94

2The choice of the constants has been made in order to simplify the exposition and is not
restrictive at all in applications. Moreover, it can be further relaxed with some careful analysis of
the sequel.



(a) (b)

Fig. 1. Illustration for the proof of Lemma 1.

where in the last inequality we have used that 1 — cosf < 92—2 From this, it can be
easily seen that d(0,0) > 1/2if 6 < /2.

Consider now a point z at distance ¢ from O and choose a coordinate system in
such a way that  has coordinates (¢, 0) (see Figure 1.b). Let p and ¢ be points with
coordinates (1 + d0)(cos7/4,sinm/4) and (1 — §)(cos3m/4,sin3m/4), respectively.
Because of condition (C2), there must be at least one point inside the annulus
within each of the angular intervals (—7/4,7/4) and (37/4,57/4) and, therefore,
d(z, F(z)) > d(z,q) and d(z, N(z)) < d(z,p). Then, we have

R(z) = d(z, F(2)) - d(z, N(2)) > d(z,q) - d(z, p)
> (-0 +1-0vV2O) ! = (G140 - (1 +v20)

If { = d(0,z) > 0.5 we have, R(z) > 0.2 > R(O) and, therefore, z is not the global
minimum of R(z). Therefore, the result follows from the continuity of R(z) and
Theorem 2. O

In order to show that the Restricted Roundness Problem can be solved in O(n)
expected time, we recall from'* the definition of LP-type problems, which in the
case of optimizing a function over a set of points can be rephrased as follows. Let
S € R? be a set of n points and w : 25 — R. We say that (S,w) is an LP-type
problem if it satisfies the following two conditions:

S1C S CS=w(S) <w(Sy) (1)
S - Sy - S w(Sl U {p}) > w(Sl)
w(S1) = w(Sy) » = & (2)
peS w(S2 U {p}) > w(S2)

Conditions (1) and (2) are usually called monotonicity and locality, respectively.
A set B C S is called a base if w(T') < w(B) for all T C B and B is a base of S if
it is a base and, furthermore, w(B) = w(S).

In'4 it is shown that if, given a base B, the operations



- Isw(BU{p}) >w(B)?  violation test

— Compute a base of BU {p}  base computation

can be performed in constant time, then a call to the algorithm

Algorithm (Sharir, Welzl)

function procedure Iptype(G,T)

F:=T; B:=T,

for all p € G \ T in random order do
Fi:=FU{p};
if w(B) < w(BU{p}) then

B:=Iptype(F,base(B U {p}));

end if;

end do;

return B;

of the form Iptype(S, ) computes the solution to the problem in O(n) expected
time (the constant hidden in the big-O notation depends exponentially on the com-
binatorial dimension of the problem, defined as the maximum cardinality of any
base).

The Restricted Roundness Problem is not LP-type, because the locality condi-
tion can be violated in situations when the optimal annulus is not unique. Never-
theless, monotonicity is obviously satisfied and, for the locality condition, consider
the following slight modification: choose Sy C S of constant size such that the
nominal angle between two consecutive points of Sg is at most w/2. Then, we have
that

SO - S - Sy - S R(Sl U {p}) > R(Sl)
R(Sl) = R(SQ) = =
peS R(S2U{p}) > R(S2)

To see this, observe that S; and Sy satisfy the Restricted Roundness Hypothesis:
conditions (C1) and (C3) are obviously satisfied and we have chosen the set Sy to
guarantee condition (C2). Let A be the thinnest annulus containing S» and denote
by c its center. We observe that from Lemma 1, ¢ € B(0,1/2) C ker S C ker S,
and since R(S1) = R(Sz), it follows from Theorem 2 that A is also the thinnest
annulus containing S;. Therefore,

R(S1U{p}) >R(S1) ©p¢g A R(S2U{p}) > R(S>2)

We can now slightly modify Sharir and Welzl’s algorithm to solve our problem:
instead of processing all points in random order, we first choose a set Sy as before
and compute the thinnest annulus containing it in O(1) time. Furthermore, each
time that a point fails to be inside the annulus and a recursive call to the algorithm



Fig. 2. A configuration of six points in convex position with two local minima.

for computing an optimal solution with some specific points on the boundary is
made, we also add the points of Sy to the set of points and compute the solution
by brute force in constant time. The rest of the analysis of Ref. [14] is exactly the
same and we have:

Theorem 3 The Restricted Roundness Problem in R? can be solved in O(n) ran-
domized time.

Unfortunately, this approach does not seem generalizable to higher dimensions
because, as the next example shows, even for sets of points in convex position in R®
we can have two local minima inside the convex hull (and arbitrarily close to each
other). Consider the following points given in spherical coordinates:

Fy =(1.05,%,0) Cy =(0952 —¢1)
P =(105%,7)  Co=(095%+¢ )

F; = (105%,%) Cs = (rulf_oﬂ-a%)

(¢ =0.001 and r is a constant that will be fixed later) and let
S ={F,F, F;,Cy,C2,C5}.

It is easy to see that the origin of the coordinate system is a local minimum of
R(z) such that points Cy, Co, Fy, Fy and F3 are on the boundary of the annulus.
Now, if we move along the z-axis (i.e. along the edge of the roundness diagram
defined by Fi, F» and F3), we can see that the point X; = (0,0,0.1) (rectangular
coordinates) is also a local minimum of R(z) (the points on the boundary of the
corresponding annulus are Cy, C3, Fy, F» and F3) for the value of r for which
d(X1,C1) = d(X1,C3) (r ~ 0.955149).

We observe that in the example there are four “almost coplanar” points in the
five point set defining the local minimum configuration (points on the boundary
of the annulus). We will see (Theorem 6) that, if this is not the case, the local
minimum defined by the configuration of points can be shown to be the global



minimum of the function. Because this configuration is quite degenerate, it is very
unlikely to be encountered in practice. Our plan for Section 5 is to use a local
optimization technique in order to locate a local minimum and then check whether
or not there may be any other local minima in a neighborhood of it.

4. Roundness Using Linear Programming

A common approach in practice to compute the roundness of a set of points
S = {p1,...,pn} is to use the width of the minimum area annulus containing the
set S as an approximation of the width of the minimum width annulus prescribed
by international standards. The main reason for this approach is that, as it is well
known, the problem of computing the annulus of minimum area can be formulated
as a linear programming problem. In order to do so, assume that p; has coordinates
(z;,y;) and let (o, ), r and R be the center, the inner and the outer radius of
the optimal solution, respectively. Then, the problem of computing the annulus of
minimum area containing S can be formulated as the optimization problem in the
variables (r, R, o, 8) of

Minimize R? — 2
subject to 2 < (x;—a)’+ (y; —B)2<R* fori=1,...,n

If we introduce the variables

o + 32 — 12
o+ 2 - R?

:U> >
|

the problem becomes

Minimize F—R

{ subject to  20m; + 28y; — 7 < a2 +y2 < 2ax;+20y;i — R fori=1,....n
(MArp)
which is a linear programming problem.

Let w be the width of the minimum width annulus and w4 be the width of the
minimum area annulus. Devillers and Preparata’ have shown that w4 is a very
good approximation of w under the hypothesis that any sector of angle 7 from the
center of the minimum width annulus contain at least one point. Specifically, if R
denotes the outer radius of the minimum width annulus, then

<wt 3w?
w w —_.
A= R

However, the situation in practice seems to be even better, in the sense that, as
reported in'®, the solution to both problems appears to be exactly the same in
most cases. In the remainder of this section we give an explanation of the frequent
coincidence of the minimum width annulus and minimum area annulus for point
sets.

The vertical distance between two parallel planes 7; = 2z = az+ By +; (i = 1,2)
is d,(m1,m) = |y1 — 72| and the problem of finding the wvertical width of a set



S ={p1,...,pn} C R?is the problem of finding the pair of parallel planes containing
S with minimum vertical distance. The problem can be solved in O(n) time because
it is a linear programming problem in the variables (a, 8,71, 72):

{ Minimize Yo — M (VW)
subject to ar; +By;i+m <z <ar;+Py;+v fori=1,...,n

If we compare (MArp) and (VW), we easily realize that:

Remark 1 Computing the minimum area annulus of a set S C R? is equivalent to
computing the vertical width of the set S c R® obtained by lifting S to the paraboloid
z=1(2? +y?).

In the next result, we give a combinatorial characterization of the solution to
the vertical width problem. We consider points in general position (no three points
on a vertical plane) but the proof can be easily extended to the general case.

Given two non-vertical parallel planes enclosing S, we denote by U and L the
sets of points on the upper and lower planes, respectively. Then we have:

Lemma 2 A pair of non-vertical parallel planes defines the solution of (VW) if,
and only if, U and L cannot be separated by a vertical plane.

Proof. Consider a pair of non-vertical parallel planes z = az+8y+~; (i = 1,2)
enclosing S and denote by (z;,y;, 2;) the coordinates of point p; . Then,

L=A{pi€S|z—az;—Byi ="}
U= {p; €S|z —az;— Py =1}

If points in &/ and £ can be separated by a vertical plane, there exist a,b,c € R
and v > 0 such that ax; + by; + ¢ > v for p; € U while ax; +by; + ¢ < —v for p; € L.
Then, for € > 0 small enough, the planes 7; : 2 = (a+ea)x+ (B8+eb)y+~y1 +e(c+v)
and 7, : 2z = (a+¢ea)x+ (B+eb)y+v2 +£(c—v) contain S and its vertical distance
is y2 — 11 — 2ev.

Conversely, if the configuration is not the minimum, then there exist a,b, ¢, c2
such that ax; + by; + ¢1 < z; < ax; +by; + co forall p € S and 2 — ¢1 < Y2 — 1.
In particular, for p; € £ we have (a — a)z; + (b — B)y; < v1 — ¢1 while for p; € U
we have (a — a)z; + (b — B)y; > 72 — ca. Because ¢a — ¢4 < 2 — 71, we have that
Y1 —¢1 < 2 —co and conclude that points of &/ and £ can be separated by a vertical
plane. a

From this result and Remark 1, we have derived the following combinatorial
characterization of the optimal configuration for the minimum area annulus.
Theorem 4 A is the annulus of minimum area containing the set S if, and only
if, S C A and points on the inner circle and points on the outer circle of A cannot
be separated by a line.

This result can be used to show that, under certain conditions, the annulus
of minimum area and minimum width are the same and thus the solution to the
minimum width problem can be found in O(n) time.

Theorem 5 Let S = {p1,...,pn} C R? be a set of points in convex position. If
there is an annulus of minimum width containing S with center strictly inside ker S,
then it can be computed in O(n) time using linear programming.
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(a) (b)

Fig. 3. Examples of local minima configurations.

Proof. We observe that, if S is in convex position, locally minimal config-
urations for the minimum width problem and for the minimum area problem are
the same when the center of the annulus is an interior point of ker S. Therefore, if
there is an annulus of minimum width containing S with center strictly inside ker S,
then it is also the annulus of minimum area containing S and it can be computed
in O(n) time using linear programming. O

In Figure 3 we show two examples where the minimum width annulus and min-
imum area annulus containing S do not coincide. The minimum area annulus is
shaded and points on its boundary are labeled a while the minimum width annulus
is drawn with dotted lines and points on its boundary are labeled w (points on the
boundary of both annuli are labeled aw).

We conclude the section observing that Theorem 4 can be easily generalized
to higher dimensions and, as pointed out by Devillers and Preparata’, minimizing
R? — r? is a very good approximation of minimizing R — r in arbitrary dimen-
sion. However, Theorem 5 cannot be generalized to higher dimensions because, as
Figure 2 shows, for d > 3 there is no uniqueness of local minima inside conv S.

5. A Discrete Local Optimization Approach

Consider a point g € R? and a unitary vector v € R%. We denote by n, the
smallest angle defined by v and vectors zop for p € N(z0). Similarly, we denote
by fv the largest angle defined by v and vectors zop for p € F(zg). Let p, and py
denote, respectively, the points that define n, and fy (see Figure 4). It is easy to
see that these points are, for A > 0 small enough, the nearest and furthest neighbors
of zg + Av.

Furthermore, from Taylor expansion we have that

R(zo + Av) =d(zo + Av,pp) — d(zo + Av,pn) = R(z0) + A(cosny — cos fy) + o(N).

We recall that the roundness diagram of S, denoted by RD(S), is obtained by
merging the closest and furthest-point Voronoi diagram of S. Using this terminol-

11



Fig. 4. Tllustration for the definitions of Section 5.

ogy, Theorem 1 can be restated as follows: zq is a local minimum of R(z) if, and
only if, zg is a vertex of RD(S) such that, for every v € S9! it holds

cosny — cos fy > 0. (1)

Of course, this quantity is just the directional derivative of R(z) if the function
is smooth, but our plan is to travel along the edges of RD(S), where directional
derivatives of R(z) do not exist. Therefore, we define the lateral directional deriva-
tive

D +R(zp) = lim Ri@o + Av) = Rio) = coSny — COS fy.
A—0+ A
The algorithm follows the idea of local optimization but, instead of moving along
the direction of steepest descent of the function, we move along the edge of RD(S)
which minimizes D,+R until a new vertex of the roundness diagram is reached.
Because we do not compute RD(S) explicitly, in each step we have to compute
the edges of the diagram starting at the given vertex and the derivative of the
function in the direction of each edge. We shall see that if z¢ is a local minimum of
the roundness function, D, +R is minimized when v is the direction of an edge of
RD(S) (in this case, the minimum is bigger than zero), but this is not necessarily
the case if xq is not a local minimum. Therefore, instead of choosing the direction
of steepest descent and proceeding along a direction which is not an edge of RD(S),
we prefer to keep traveling on the diagram and take advantage of the discrete nature
of the problem. In this way, in each step we advance “as much as we can” and the
value of the function always decreases. Although the algorithm works for arbitrary
dimensions, in the rest of the paper we concentrate on d = 2 and d = 3, which are
the cases of practical interest in tolerancing metrology applications.

12



The algorithm is extremely simple and can be described as follows:

Input A set of points S and a nominal center c.
Output A local minimum of R(x).

begin
Step 1 From ¢, move to a vertex of RD(S).

General step While the vertex is not a local minimum, compute the incident
edge of RD(S) which minimizes D, +R and move to the other
incident vertex.

end

Step 1 can be trivially performed in O(n) time and, because we do not compute
any Voronoi diagram, each iteration of the General step also takes linear time.
Therefore, the worst case complexity of the algorithm is O(Kn), where K is the
number of vertices of the roundness diagram that are visited during the process.
For d = 2, K = §(n?), leading to a cubic algorithm, and the complexity is bigger for
d = 3. However, in the experiments that will be presented in the next section we
can see that K grows very slowly with n and thus the complexity of the algorithm
“in practice” is close to linear.

In the rest of this section, we study conditions that guarantee that the local
minimum that we reach with the algorithm is the global minimum of the function.
We are going to look more closely at the local minimum configurations to show
that cases that allow another nearby local minimum are very unlikely to be encoun-
tered in practice. More importantly, the conditions can be checked once the local
minimum has been reached in order to guarantee that we have found the global
minimum of the problem.

We are going to make two assumptions on the input:

(A1) S C A(O,1—46,1+4) for § = 0.05.

(A2) There is at least one point of S inside any cone with apex at O and angle

8 =r/5.

Assumption (Al) is analogous to (C1) for the Restricted Roundness Problem
and assumption (A2) is similar to (C2) and prevents “big holes” in the set S. By
using the same ideas as in the proof of Lemma 1, it can be shown that the local
minimum found by the algorithm is inside B(0,0.1). If we identify S¢~! with the
set of unitary vectors in R?, a sufficient condition for the local minimum found
by the algorithm to be the global minimum of the problem can be stated in the
following way:

Theorem 6 Let zg € B(0,0.1) be a local minimum of R(x) and denote R(zo) = 7.
We define

m = min, Dy+R(z0) = vgls1£1(cos Ny — COS fy).
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If m > +2, then xq is the global minimum of R(z).

Proof. We observe that from the characterization of the local minima of the
roundness function, we have m > 0. Furthermore, R(zg + Av) > R(xo) for A > 0
small enough. We are going to show that this inequality holds for any A > 0 if
m > 2

Let p, and p; be, respectively, the nearest and furthest neighbors of zy deter-
mining the angles ny and fy with v and consider R*(zg + Av) = d(zo + Av,py) —
d(zo + Av,p,). We observe that R(zg + Av) > R*(zo + Av).

If we denote by r the inner radius of the annulus, the non-zero solution of the
equation

R*(xo + Av) = R(xo)

is

- 27 v(r 4+ v)(cosny — cos fy)
* 7 2= (ycos fy —r(cosny — cos fy))*

Because the numerator of (2) is always positive we have that, if \g is positive,

(2)

)\Ozw(

> cosny — cos fy) > 2r(1 + %)m > 2ry(r 4+ 7). (3)

Therefore, we have
R(zo+ Av) > R"(xo + Av) >y =R(zo) if 0< A< 2ry(r +7).

On the other hand, from assumption (A2) and following the same idea as in the
proof of Lemma 1, if we denote K = cos(w/10) then we can write

Rizo +Av) > Vr2 + A2 420K — /(r +79)2 4+ X2 — 2\rK.

Therefore,

2 2
(R(xo +Av))* — v S4B
2
where
A=r2+ X 447
B =((r? +A2)2 — 4\22K2 4+ 7(2r +9)(r2 + A2 + 22rK) /%

A straightforward computation shows that

2
A? - B* > )\((% =)A= (4r + 27)yr) = AE1(N).

Because E;()) increases with ), in order to show that A — B > 0 if A > 2r2y, it is
enough to see that

E1(2r°y) = ry(Tr® — (44 29°)r — 29) = ryEs(y) > 0,
and this follows from the facts that E>(y) decreases with v and that

Ey(0.1) = 7r* —4.02r —2 >0

14



(a) (b)
Fig. 5. Illustration for the proof of Proposition 1.

because r > 0.85. O

In order to get a geometric interpretation of min, cga—1 Dy+R(z) (and to com-
pute it easily), we prove the following:

Proposition 1 If ¢ is a local minimum of R(z), then min,cga—1 Dy+R(xg) is
achieved when v is the direction of an edge of the roundness diagram of S incident
to xp.

Proof. Without loss of generality, we can assume that z( is the origin of the
coordinate system. First, we consider the case d = 2. If v is not parallel to an edge
of the roundness diagram incident to z, then there is a unique point p,, € N(zq)
determining an angle n, with v (as in Figure 5.a) and analogously for p; and f .
Therefore, we can slightly move v towards p,p; thus decreasing cosn, — cos fy.

For d = 3, if v is not parallel to a face of the roundness diagram incident to zg,
then we can repeat the argument of the previous paragraph. Finally, assume that
v is parallel to a face but not to an edge of the roundness diagram incident to zg.
Then, either v is parallel to the bisector plane of the points in F(zg) and is not
parallel to the bisector plane of the points in N(xg), or the opposite. Assume that
we are in the former situation, the latter one can be handled in an analogous way.

In this situation, there are two points ps1,pra € F(x¢) determining an angle fy
with v and one point p, € N(zg) determining an angle n, with v. Let fi, f> and
ni be the projections of p¢1, pgo and p,, respectively, on the unit sphere centered
at xo (see Figure 5.b). Then, v is constrained to the maximal circle C defined by
the intersection of the plane x - fi fo = 0 with the unit sphere. Let I', denote the
circle intersection of the plane

X f101 =«

with the unit sphere. Because zg is a local minimum,
cosny —cos fy =v- fiegp =ag >0

and furthermore 'y, intersects (or is tangent to) C' and grows when oo diminishes,
we can conclude that v is not a local minimum of D+ R (o). d
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Fig. 6. xo is a local minimum but the global minimum is z.

It is worth noting that this result is not true if zg is not a local minimum.
In these cases, the minimum of D,+R(x¢) can be determined by only two points.
Therefore, the direction of steepest descent of the function does not always coincide
with an edge of the roundness diagram, and the proposed algorithm is not equivalent
to the classical local optimization approach.

We can see now why local minima of the roundness function of almost round
sets which are not the global minima are unlikely to be encountered in practice.
If zg is a local minimum of the roundness function and the set is almost round,
Theorem 6 and Proposition 1 state that zg can only fail to be the global minimum
of the function if there exists an edge of the roundness diagram incident to o with
direction v and such that ny, ~ fy. Then, it is necessary that:

— For d = 2 we have three out of the four points defining the local minimum near
the boundary of a cone and, therefore, two points of the local minimum con-
figuration are “almost collinear” with xg. In Figure 6, z( is a local minimum
with points p1, p2, ¢1 and g2 on the boundary of the annulus (they alternate
angularly) but the global minimum is z; and points on the boundary of the
globally optimal annulus are py, p3, ¢1 and gs.

— For d = 3 we have four out of the five points defining the local minimum near
the boundary of a cone and, therefore, there are four “almost coplanar” points
in the configuration defining the local minimum.

6. Experimental Results

We have done experiments with two kinds of input data:

— For d = 2, with some data provided by the National Institute of Standards
and Technology (NIST) which imitates a variety of error patterns that occur
in practice.
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| Set, | Wy | w | (wp —w)/w | it. | Wy | (wg — w)/w |
Sy | 0.017888 | 0.017811 0.00429 0.017929 0.00663
Sy | 0.017744 | 0.017644 0.00567 0.017717 0.00418
S3 | 0.001990 | 0.001975 0.00754 0.001986 0.00602
S | 0.009976 | 0.009945 0.00317 0.010088 0.01443
Sy | 0.006985 | 0.006666 0.04776 0.006933 0.04006
Se | 0.006959 | 0.006720 0.03557 0.006752 0.00477
S7 | 0.017870 | 0.002009 7.89088 10 | 0.002114 0.05236

Table 1. Results on data simulating frequent error patterns in metrology ap-
plications. Starting at the second column we have the nominal width, the real
width, the relative error, the number of iterations performed by the algorithm,
the algebraic width of the set (defined below) and the relative error between
algebraic width and real width.

O N N =] =] =

— Both for d = 2 and d = 3 with data randomly generated inside the annulus
A(O,1 —e,1+¢e) fore=10""and i = 1,2,3,4.

Table 1 shows the results of the first experiment. Si,...,S7 are samples of
800 points with nominal center at the origin and nominal radius 1. In the second
column we have the nominal width, i.e. w, = R(O), and in the third column
the local minimum obtained for the algorithm starting at the nominal center. In
all these cases, the computed local minimum can be guaranteed to be the global
minimum of the function by a direct application of Theorem 6. The fourth column
shows the relative improvement over the nominal width and the fifth the number
of iterations of the algorithm (i.e. the number of vertices of the roundness diagram
that are visited during the procedure). If a good choice of the nominal center has
been made (Si,...,S4), then already the first or the second vertex of the roundness
diagram is the solution to the problem. Only when a very poor choice of the nominal
center is made (S7) the number of iterations grows a little bit. Finally, the sixth
column shows the algebraic width of the set, which is an alternative measure used
in industry. For computing the algebraic width, we minimize

n

> (d(X,p)” =717

i=1

in the variables (X = (z,y),r), which can be transformed into a linear least squares
fit. Now, if X, is the algebraic center (solution to the problem), the algebraic width
is w, = R(X,). We can see in the table how poor this solution can be (in some
cases, even worst than the nominal width). Finally, it is worth noting that, in all
these cases, the minimum area annulus is exactly the same as the minimum width
annulus.

For the randomly generated data, we have computed the average of 20 iterations
of the algorithm for sets of 500, 1000, 2000, ...,10000 points. As a starting point
for the algorithm, we have chosen a random point z € B(0,0.1) with the aim
of measuring the complexity of the roundness diagram in a neighborhood of the
solution (if the origin is chosen as a starting point, the number of the iterations
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Fig. 7. Number of iterations for randomly generated data (d=2).

does not seem to grow with n). The results are shown in Figure 7 and Figure 8 for
d = 2 and d = 3 respectively.

As should be expected, the number of iterations grows with the dimension
and also if the nominal width of the sample diminishes. However, the behavior
is clearly sublinear and, therefore, the performance of the algorithm in practice is
subquadratic.
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Fig. 8. Number of iterations for randomly generated data (d=3).

7. Final Remarks

We conclude with some directions of research suggested by the work:

e The techniques used in this paper could be extended to deal with sets in the
shape of a circular arc or a spherical cap.

e The main drawback of the minimum width annulus is that it is very sensitive to
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errors in the data. Therefore, it would be very interesting to try to generalize
this work to compute the thinnest annulus containing all but & of the points,
where k is small, in the same way that it has been done in'? for LP-type
problems.

o If we take into account some uncertainty in the measurements, the objective is
to compute the thinnest annulus containing a given set of disks. If the radius
of the disks are small compared with the width of the annulus and they do
not intersect, the approach proposed in the paper should also be useful.

e Try to generalize this approach to other problems in Tolerancing Metrology,
like measuring flatness of almost flat sets, collinearity of almost collinear points
or circularity of almost circular sets in the space.
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