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h 2002Communi
ated by P. K. AgarwalABSTRACTIn this paper we address the problem of 
omputing the thinnest annulus 
ontaining aset of points S � Rd. For d = 2, we show that the problem 
an be solved inO(n) expe
tedtime for a fairly general family of almost round sets, by using a slight modi�
ation ofSharir and Welzl's algorithm for solving LP-type problems. We also show that, for pointsin 
onvex position, the problem 
an be solved in O(n) deterministi
 time using linearprogramming. For d = 2 and d = 3, we propose a dis
rete lo
al optimization approa
h.Despite the extreme simpli
ity and worst 
ase O(nd+1) 
omplexity of the algorithm, wegive empiri
al eviden
e that the algorithm performs very well (
lose to linear time) ifthe input is almost round. We also present some theoreti
al results that give a partialexplanation of this behavior: although the number of lo
al minima may be quadrati
(already for d = 2), almost round 
on�gurations of points having more than one lo
alminimum are very unlikely to be en
ountered in pra
ti
e.Keywords: Geometri
 optimization, toleran
ing metrology, linear programming, round-ness1. Introdu
tionThe problem of 
omputing the thinnest annulus 
ontaining a given set of pointsS � R2, the so 
alled roundness problem, has been extensively studied. The mainmotivation for this problem 
omes from toleran
ing metrology: given an obje
tthat has to be tested for 
ir
ularity, take a sample of points from the obje
t andmeasure the 
ir
ularity of this sample set; then a

ept the obje
t if the 
ir
ularity�A preliminary version of this paper appeared as Ref. [16℄. Part of this work has been donewhile the se
ond author was visiting INRIA. Partially supported by the Fren
h-Spanish 
ollab-oration program Pi
asso and by grants DGES-MEC-PB98-0933, DGES-MEC-PB98-0713-C02-01and Universidad de Al
al�a E041/2000. 1



is good enough and reje
t it otherwise. The measure for 
ir
ularity re
ommendedby international standards is the width of the thinnest annulus 
ontaining the set(see pp. 40-42 of Ref. [10℄ or p. 14 of Ref. [12℄). Despite this fa
t, alternativemeasures, su
h as least squares �t, are used in industry, mainly be
ause the problemof 
omputing the thinnest annulus is algorithmi
ally 
hallenging and the algorithmsavailable are either too slow or too 
ompli
ated.In order to summarize the long history of this problem let us mention that the�rst non-trivial observation, namely, that the 
enter of the optimal annulus is avertex of the diagram obtained by merging the 
losest and furthest point Voronoidiagrams of the set or, equivalently, that there are four points on the boundaryof the annulus, has been independently redis
overed in several papers.9;17;18 Upto our knowledge, Rivlin17 is the �rst author who gives a stronger formulation ofthis result: he shows that the 
enter is always the interse
tion of an edge of ea
hVoronoi diagram or, equivalently, that there are two points on the inner 
ir
le andtwo points on the outer 
ir
le of the annulus and, furthermore, points on the inner
ir
le interla
e angle-wise with points on the outer 
ir
le as seen from the 
enter ofthe annulus.The best asymptoti
 bound for the 
omplexity of the problem is due to Agarwaland Sharir,2 who redu
e the problem to a width-type problem in R3 by lifting thepoints to the unit paraboloid and give an O(n3=2+") randomized algorithm usingparametri
 sear
h and de
omposition of arrangements of algebrai
 surfa
es in R4.Be
ause the problem 
an have 
(n2) lo
al minima (even for sets of points in 
onvexposition, see Ref. [11℄), there is little hope that the 
omplexity 
an be signi�
antlyimproved for non-restri
ted data.A promising approa
h to get algorithms that are useful in pra
ti
e is try tomake some assumptions on the input. As it has been pointed out by de Berg etal.,6 one of the reasons why many algorithms developed in 
omputational geom-etry are 
ompli
ated or slow is be
ause they have to be designed to handle very
ompli
ated, hypotheti
al inputs. A possible way to over
ome this situation is tryto take advantage of additional properties of the input data that are presented insome spe
i�
 family of problems. As we shall see, the roundness problem, withsome assumptions suggested by the metrology-type input is a good example of howsu

essful this strategy 
an be.A �rst step has been given by Mehlhorn et al. in Ref. [15℄, where the authorsderive some results using what they 
all theminimum quality assumption. Followinga similar idea, Gar
��a et al.11 show that, if the angular order of the points aroundthe 
enter of the solution is given as part of the input, there is at most one lo
alminimum of the problem 
onsistent with the given order and, furthermore, it 
anbe 
omputed in O(n logn) time using a simple algorithm. In the same paper, theauthors show that, if points are in 
onvex position, the problem 
an be solved inO(n) time.More re
ently, Dun
an et al.8 have shown that if the mean radius of the annulusis �xed, the problem is easier and 
an be solved in O(n logn) time while de Berget al.5 independently, have shown that the same bound holds if the inner, mean or2



outer radius of the annulus is �xed. Bose and Morin3 extend the results of Mehlhornet al.15 to the 
ase where the set is not 
onvex by making some assumptions on theinput whi
h are essentially equivalent to the restri
ted roundness hypothesis that weuse below. Devillers and Preparata7 have shown that the annulus of minimum area(whi
h 
an be 
omputed using linear programming) is a very good approximationof the minimum width a nnulus for almost round sets.Finally, Agarwal et al.1 and Chan4 give a variety of approximation algorithms forarbitrary dimension and Chan points out that the exa
t solution to the roundnessproblem in Rd 
an be obtained in O(nbd=2
+1) time by optimizing inside a 
onvexpolytope in Rd+2.1.1. Our ResultsIn this paper, instead of looking for simple algorithms that give an approximatesolution to the problem, we propose simple algorithms that give the exa
t solu-tion for families of input sets whi
h are spe
ially relevant in toleran
ing metrologyappli
ations.We will deal with almost round sets of points. Roughly speaking, we say that aset is almost round if it is 
ontained inside a thin annulus 
entered at a given point,
alled the nominal 
enter, and we 
all nominal radius the distan
e from ea
h pointto the nominal 
enter.{ For d = 2, if we further assume a bound on the lo
al variation of the nominalradius (but allowing sets whi
h are not in 
onvex position), we are able toshow that the problem 
an be solved in O(n) expe
ted time with a slightmodi�
ation of Sharir and Welzl's algorithm for solving LP-type problems.{ If S is a set of points in 
onvex position in R2, the problem 
an be solved inO(n) (deterministi
) time using linear programming.{ For d = 2 and d = 3, we propose a dis
rete lo
al optimization method thatperforms very well (
lose to linear time) in the experiments. This is, to thebest of our knowledge, the �rst pra
ti
al algorithm to get the exa
t solutionto the problem for d = 3. We also present some theoreti
al results that give apartial explanation of this behavior, showing that almost round 
on�gurationsof points having more than one lo
al minimum are quite degenerate and thusvery unlikely to be en
ountered in pra
ti
e.2. PreliminariesLet S = fp1; : : : ; png be a set of points in Rd and let 
onvS denote its 
onvexhull. The unit hypersphere is denoted by Sd�1 and d(p; q) is the Eu
lidean dis-tan
e between points p and q. V
(S) and Vf (S) denote, respe
tively, the 
losestand furthest-point Voronoi diagrams of S. We de�ne the roundness diagram of S,denoted by RD(S), as the subdivision of the plane obtained by merging the 
losestand furthest-point Voronoi diagrams of S.3



The 
losed ball 
entered at 
 with radius r is denoted by B(
; r) and the lo
usof points between two 
on
entri
 spheres of radius r and R is 
alled d-annulus anddenoted A(
; r; R), that is,A(
; r; R) = fx 2 Rd j r � d(x; 
) � R g:Finally, w = R � r and rm = (R + r)=2 are, respe
tively, the width and the meanradius of the annulus.Given a point x 2 Rd, we denote by N(x) and F (x) the set of nearest andfurthest neighbors of x in S. Then, the roundness fun
tion 
an be de�ned in thefollowing way: R(x) = d(x; F (x)) � d(x;N(x)):The roundness problem 
an be formulated now as 
omputing the annulus ofsmallest width 
ontaining S or, equivalently, �ndingR(S) = infx2RdR(x):The following theorem gives a 
omplete 
hara
terization of the lo
al minima ofR(x) in Rd whi
h will be useful later:Theorem 1 (11) x0 2 Rd is a lo
al minimum of R(x) if, and only if, when pro-je
ted onto a 
ommon hypersphere 
entered at x0, nearest and furthest neighbors ofx0 
annot be separated by a hyperplane.It is worth noting that, as a 
onsequen
e, if x0 is a lo
al minimum of R(x), thenjN(x0)j and jF (x0)j, the number of 
losest and furthest neighbors of x0, satisfy theequation jN(x0)j + jF (x0)j � d+ 2, with jN(x0)j � 2 and jF (x0)j � 2. From this,it follows that lo
al minima are verti
es of the roundness diagram of S whi
h arenot verti
es of the 
losest or the furthest point Voronoi diagram of S. Furthermore,the result generalizes in a natural way to \points at in�nity", if we interpret ahyperplane as a hypersphere 
entered at in�nity, 
hara
terizing thus the situationswhen the optimal annulus degenerates to a slab.Although the roundness fun
tion 
an have as many as 
(n2) lo
al minima evenfor sets of points in 
onvex position, Gar
��a et al.11 have shown that the situation
hanges drasti
ally if we assume that the angular order of the points around the
enter of the solution is known in advan
e.More formally, let S = fp1; : : : ; png be a labeled set of points in the plane su
hthat the polygon P with verti
es p1; : : : ; pn is simple and de�ne the kernel of S,denoted kerS, as the lo
us of points from whi
h the points of S are seen in thegiven angular order. We point out that, if kerS 6= ;, then P is a star-shapedpolygon and kerP = kerS \ 
onvS.Theorem 2 (11) Inside kerS there is at most one lo
al minimum of R(x).In the next se
tion we exploit this result and show that the restri
ted roundnessproblem, de�ned below, 
an be solved in linear expe
ted time be
ause it is \almostLP-type". 4



3. The Restri
ted Roundness ProblemThroughout this se
tion, S is a set of points in the plane. Furthermore, mo-tivated by properties of the data 
oming from toleran
ing metrology appli
ations,we assume that points of S are sampled around a point whi
h is 
alled nominal
enter, the set is 
ontained inside a nominal annulus 
entered at the nominal 
enterand with a given nominal width, the sample of points is well distributed around the
ir
le and, �nally, there is a bound on the lo
al variation of the distan
e from thepoints to the nominal 
enter.More formally, we put the origin of the 
oordinate system O at the nominal
enter and denote by (�i; �i) the polar 
oordinates of the point pi. We assume that�1 < �2 < : : : < �n and indi
es are understood modulo n (obviously, the expression�1��n should be understood as 2�+�1��n). Finally, we s
ale the problem in su
ha way that the mean radius of the nominal annulus is 1. We say that S satis�es theRestri
ted Roundness Hypothesis ifa :j�i � 1j � Æ = 0:1 (C1)�i+1 � �i � �2 (C2)j�i+1 � �ij � �i+1 � �i (C3)It is worth pointing out that 
ondition (C1) is referred to as theminimum qualityassumption in3, while 
ondition (C3) is looser than the 
onvexity required in15 andthe star-shape assumption in3 
an be derived as a 
onsequen
e of (C3).In this se
tion, we deal with this restri
ted version of the problem, that weshall refer to as the Restri
ted Roundness Problem. It is worth noting that this isa
tually the real problem in toleran
ing metrology appli
ations, either be
ause we
an make a minimum quality assumption on the manufa
turing pro
ess or be
auseshapes that do not satisfy these assumptions 
an be easily reje
ted.The following result guarantees that the 
enter of the optimal annulus is insidethe kernel of S.Lemma 1 If S satis�es the Restri
ted Roundness Hypothesis, there exists a uniquex0 2 R2 su
h that R(S) = R(x0) and, furthermore, x0 2 B(O; 1=2) � kerS.Proof. First, we show that B(O; 1=2) � kerS. Let p and q be two 
onse
utivepoints of S with 
oordinates p = (r; 0) and q = (rq 
os �; rq sin �) (see Figure 1.a).Let ` be the line through p and q. For a �xed value of �, d(O; `) is minimum whenr is minimum and rq is maximum and, be
ause of (C1) and (C3), we have r � 0:9and rq � r + �. Therefore,d(O; `) = rrq sin �qr2q + r2 � 2rrq 
os � � 0:9(0:9 + �) sin ��p1:81 + 0:9�aThe 
hoi
e of the 
onstants has been made in order to simplify the exposition and is notrestri
tive at all in appli
ations. Moreover, it 
an be further relaxed with some 
areful analysis ofthe sequel. 5
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Fig. 1. Illustration for the proof of Lemma 1.where in the last inequality we have used that 1� 
os � � �22 . From this, it 
an beeasily seen that d(O; `) � 1=2 if � < �=2.Consider now a point x at distan
e � from O and 
hoose a 
oordinate system insu
h a way that x has 
oordinates (�; 0) (see Figure 1.b). Let p and q be points with
oordinates (1 + Æ)(
os�=4; sin�=4) and (1 � Æ)(
os 3�=4; sin 3�=4), respe
tively.Be
ause of 
ondition (C2), there must be at least one point inside the annuluswithin ea
h of the angular intervals (��=4; �=4) and (3�=4; 5�=4) and, therefore,d(x; F (x)) � d(x; q) and d(x;N(x)) � d(x; p). Then, we haveR(x) = d(x; F (x)) � d(x;N(x)) � d(x; q)� d(x; p)� ��2 + (1� Æ)2 + (1� Æ)p2 � �1=2 � ��2 + (1 + Æ)2 � (1 + Æ)p2 � �1=2:If � = d(O; x) � 0:5 we have, R(x) > 0:2 � R(O) and, therefore, x is not the globalminimum of R(x). Therefore, the result follows from the 
ontinuity of R(x) andTheorem 2. �In order to show that the Restri
ted Roundness Problem 
an be solved in O(n)expe
ted time, we re
all from14 the de�nition of LP -type problems, whi
h in the
ase of optimizing a fun
tion over a set of points 
an be rephrased as follows. LetS 2 Rd be a set of n points and ! : 2S ! R. We say that (S; !) is an LP -typeproblem if it satis�es the following two 
onditions:S1 � S2 � S ) !(S1) � !(S2) (1)S1 � S2 � S!(S1) = !(S2)p 2 S 9=;) 8<: !(S1 [ fpg) > !(S1),!(S2 [ fpg) > !(S2) (2)Conditions (1) and (2) are usually 
alled monotoni
ity and lo
ality, respe
tively.A set B � S is 
alled a base if !(T ) < !(B) for all T ( B and B is a base of S ifit is a base and, furthermore, !(B) = !(S).In14 it is shown that if, given a base B, the operations6



{ Is !(B [ fpg) > !(B)? violation test{ Compute a base of B [ fpg base 
omputation
an be performed in 
onstant time, then a 
all to the algorithmAlgorithm (Sharir, Welzl)fun
tion pro
edure lptype(G,T )F := T ; B := T ;for all p 2 Gr T in random order doF := F [ fpg;if !(B) < !(B [ fpg) thenB:=lptype(F ,base(B [ fpg));end if;end do;return B;of the form lptype(S; ;) 
omputes the solution to the problem in O(n) expe
tedtime (the 
onstant hidden in the big-O notation depends exponentially on the 
om-binatorial dimension of the problem, de�ned as the maximum 
ardinality of anybase).The Restri
ted Roundness Problem is not LP-type, be
ause the lo
ality 
ondi-tion 
an be violated in situations when the optimal annulus is not unique. Never-theless, monotoni
ity is obviously satis�ed and, for the lo
ality 
ondition, 
onsiderthe following slight modi�
ation: 
hoose S0 � S of 
onstant size su
h that thenominal angle between two 
onse
utive points of S0 is at most �=2. Then, we havethat S0 � S1 � S2 � SR(S1) = R(S2)p 2 S 9=;) 8<: R(S1 [ fpg) > R(S1),R(S2 [ fpg) > R(S2)To see this, observe that S1 and S2 satisfy the Restri
ted Roundness Hypothesis:
onditions (C1) and (C3) are obviously satis�ed and we have 
hosen the set S0 toguarantee 
ondition (C2). Let A be the thinnest annulus 
ontaining S2 and denoteby 
 its 
enter. We observe that from Lemma 1, 
 2 B(O; 1=2) � kerS2 � kerS1and sin
e R(S1) = R(S2), it follows from Theorem 2 that A is also the thinnestannulus 
ontaining S1. Therefore,R(S1 [ fpg) > R(S1), p 62 A , R(S2 [ fpg) > R(S2)We 
an now slightly modify Sharir and Welzl's algorithm to solve our problem:instead of pro
essing all points in random order, we �rst 
hoose a set S0 as beforeand 
ompute the thinnest annulus 
ontaining it in O(1) time. Furthermore, ea
htime that a point fails to be inside the annulus and a re
ursive 
all to the algorithm7
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Fig. 2. A 
on�guration of six points in 
onvex position with two lo
al minima.for 
omputing an optimal solution with some spe
i�
 points on the boundary ismade, we also add the points of S0 to the set of points and 
ompute the solutionby brute for
e in 
onstant time. The rest of the analysis of Ref. [14℄ is exa
tly thesame and we have:Theorem 3 The Restri
ted Roundness Problem in R2 
an be solved in O(n) ran-domized time.Unfortunately, this approa
h does not seem generalizable to higher dimensionsbe
ause, as the next example shows, even for sets of points in 
onvex position in R3we 
an have two lo
al minima inside the 
onvex hull (and arbitrarily 
lose to ea
hother). Consider the following points given in spheri
al 
oordinates:F1 = (1:05; �2 ; 0) C1 = (0:95; �2 � "; �8 )F2 = (1:05; �2 ; �4 ) C2 = (0:95; �2 + "; 5�8 )F3 = (1:05; �2 ; 3�4 ) C3 = (r; 19�40 ; 7�8 )(" = 0:001 and r is a 
onstant that will be �xed later) and letS = fF1; F2; F3; C1; C2; C3g:It is easy to see that the origin of the 
oordinate system is a lo
al minimum ofR(x) su
h that points C1, C2, F1, F2 and F3 are on the boundary of the annulus.Now, if we move along the z-axis (i.e. along the edge of the roundness diagramde�ned by F1, F2 and F3), we 
an see that the point X1 = (0; 0; 0:1) (re
tangular
oordinates) is also a lo
al minimum of R(x) (the points on the boundary of the
orresponding annulus are C1, C3, F1, F2 and F3) for the value of r for whi
hd(X1; C1) = d(X1; C3) (r � 0:955149).We observe that in the example there are four \almost 
oplanar" points in the�ve point set de�ning the lo
al minimum 
on�guration (points on the boundaryof the annulus). We will see (Theorem 6) that, if this is not the 
ase, the lo
alminimum de�ned by the 
on�guration of points 
an be shown to be the global8



minimum of the fun
tion. Be
ause this 
on�guration is quite degenerate, it is veryunlikely to be en
ountered in pra
ti
e. Our plan for Se
tion 5 is to use a lo
aloptimization te
hnique in order to lo
ate a lo
al minimum and then 
he
k whetheror not there may be any other lo
al minima in a neighborhood of it.4. Roundness Using Linear ProgrammingA 
ommon approa
h in pra
ti
e to 
ompute the roundness of a set of pointsS = fp1; : : : ; png is to use the width of the minimum area annulus 
ontaining theset S as an approximation of the width of the minimum width annulus pres
ribedby international standards. The main reason for this approa
h is that, as it is wellknown, the problem of 
omputing the annulus of minimum area 
an be formulatedas a linear programming problem. In order to do so, assume that pi has 
oordinates(xi; yi) and let (�; �), r and R be the 
enter, the inner and the outer radius ofthe optimal solution, respe
tively. Then, the problem of 
omputing the annulus ofminimum area 
ontaining S 
an be formulated as the optimization problem in thevariables (r; R; �; �) of� Minimize R2 � r2subje
t to r2 � (xi � �)2 + (yi � �)2 � R2 for i = 1; : : : ; nIf we introdu
e the variables r̂ = �2 + �2 � r2R̂ = �2 + �2 �R2the problem be
omes� Minimize r̂ � R̂subje
t to 2�xi + 2�yi � r̂ � x2i + y2i � 2�xi + 2�yi � R̂ for i = 1; : : : ; n(MALP )whi
h is a linear programming problem.Let ! be the width of the minimum width annulus and !A be the width of theminimum area annulus. Devillers and Preparata7 have shown that !A is a verygood approximation of ! under the hypothesis that any se
tor of angle �2 from the
enter of the minimum width annulus 
ontain at least one point. Spe
i�
ally, if Rdenotes the outer radius of the minimum width annulus, then!A � ! + 3!2R :However, the situation in pra
ti
e seems to be even better, in the sense that, asreported in16, the solution to both problems appears to be exa
tly the same inmost 
ases. In the remainder of this se
tion we give an explanation of the frequent
oin
iden
e of the minimum width annulus and minimum area annulus for pointsets.The verti
al distan
e between two parallel planes �i � z = �x+�y+
i (i = 1; 2)is dv(�1; �2) = j
1 � 
2j and the problem of �nding the verti
al width of a set9



S = fp1; : : : ; png � R3 is the problem of �nding the pair of parallel planes 
ontainingS with minimum verti
al distan
e. The problem 
an be solved in O(n) time be
auseit is a linear programming problem in the variables (�; �; 
1; 
2):� Minimize 
2 � 
1subje
t to �xi + �yi + 
1 � zi � �xi + �yi + 
2 for i = 1; : : : ; n (VW)If we 
ompare (MALP ) and (VW), we easily realize that:Remark 1 Computing the minimum area annulus of a set S � R2 is equivalent to
omputing the verti
al width of the set Ŝ � R3 obtained by lifting S to the paraboloidz = 12 (x2 + y2).In the next result, we give a 
ombinatorial 
hara
terization of the solution tothe verti
al width problem. We 
onsider points in general position (no three pointson a verti
al plane) but the proof 
an be easily extended to the general 
ase.Given two non-verti
al parallel planes en
losing S, we denote by U and L thesets of points on the upper and lower planes, respe
tively. Then we have:Lemma 2 A pair of non-verti
al parallel planes de�nes the solution of (VW) if,and only if, U and L 
annot be separated by a verti
al plane.Proof. Consider a pair of non-verti
al parallel planes z = �x+�y+
i (i = 1; 2)en
losing S and denote by (xi; yi; zi) the 
oordinates of point pi . Then,L = fpi 2 S j zi � �xi � �yi = 
1gU = fpi 2 S j zi � �xi � �yi = 
2gIf points in U and L 
an be separated by a verti
al plane, there exist a; b; 
 2 Rand � > 0 su
h that axi+ byi+ 
 � � for pi 2 U while axi+ byi+ 
 � �� for pi 2 L.Then, for " > 0 small enough, the planes �l : z = (�+"a)x+(�+"b)y+
1+"(
+�)and �u : z = (�+ "a)x+(�+ "b)y+
2+ "(
��) 
ontain S and its verti
al distan
eis 
2 � 
1 � 2"�.Conversely, if the 
on�guration is not the minimum, then there exist a; b; 
1; 
2su
h that axi + byi + 
1 � zi � axi + byi + 
2 for all p 2 S and 
2 � 
1 < 
2 � 
1.In parti
ular, for pi 2 L we have (a � �)xi + (b � �)yi � 
1 � 
1 while for pi 2 Uwe have (a � �)xi + (b � �)yi � 
2 � 
2. Be
ause 
2 � 
1 < 
2 � 
1, we have that
1�
1 < 
2�
2 and 
on
lude that points of U and L 
an be separated by a verti
alplane. �From this result and Remark 1, we have derived the following 
ombinatorial
hara
terization of the optimal 
on�guration for the minimum area annulus.Theorem 4 A is the annulus of minimum area 
ontaining the set S if, and onlyif, S � A and points on the inner 
ir
le and points on the outer 
ir
le of A 
annotbe separated by a line.This result 
an be used to show that, under 
ertain 
onditions, the annulusof minimum area and minimum width are the same and thus the solution to theminimum width problem 
an be found in O(n) time.Theorem 5 Let S = fp1; : : : ; png � R2 be a set of points in 
onvex position. Ifthere is an annulus of minimum width 
ontaining S with 
enter stri
tly inside kerS,then it 
an be 
omputed in O(n) time using linear programming.10
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Fig. 3. Examples of lo
al minima 
on�gurations.Proof. We observe that, if S is in 
onvex position, lo
ally minimal 
on�g-urations for the minimum width problem and for the minimum area problem arethe same when the 
enter of the annulus is an interior point of kerS. Therefore, ifthere is an annulus of minimum width 
ontaining S with 
enter stri
tly inside kerS,then it is also the annulus of minimum area 
ontaining S and it 
an be 
omputedin O(n) time using linear programming. �In Figure 3 we show two examples where the minimum width annulus and min-imum area annulus 
ontaining S do not 
oin
ide. The minimum area annulus isshaded and points on its boundary are labeled a while the minimum width annulusis drawn with dotted lines and points on its boundary are labeled w (points on theboundary of both annuli are labeled aw).We 
on
lude the se
tion observing that Theorem 4 
an be easily generalizedto higher dimensions and, as pointed out by Devillers and Preparata7, minimizingR2 � r2 is a very good approximation of minimizing R � r in arbitrary dimen-sion. However, Theorem 5 
annot be generalized to higher dimensions be
ause, asFigure 2 shows, for d � 3 there is no uniqueness of lo
al minima inside 
onvS.5. A Dis
rete Lo
al Optimization Approa
hConsider a point x0 2 Rd and a unitary ve
tor v 2 Rd. We denote by nv thesmallest angle de�ned by v and ve
tors x0p for p 2 N(x0). Similarly, we denoteby fv the largest angle de�ned by v and ve
tors x0p for p 2 F (x0). Let pn and pfdenote, respe
tively, the points that de�ne nv and fv (see Figure 4). It is easy tosee that these points are, for � > 0 small enough, the nearest and furthest neighborsof x0 + �v.Furthermore, from Taylor expansion we have thatR(x0 + �v) = d(x0 + �v; pf )� d(x0 + �v; pn) = R(x0) + �(
osnv � 
os fv) + o(�):We re
all that the roundness diagram of S, denoted by RD(S), is obtained bymerging the 
losest and furthest-point Voronoi diagram of S. Using this terminol-11
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Fig. 4. Illustration for the de�nitions of Se
tion 5.ogy, Theorem 1 
an be restated as follows: x0 is a lo
al minimum of R(x) if, andonly if, x0 is a vertex of RD(S) su
h that, for every v 2 Sd�1 it holds
osnv � 
os fv > 0: (1)Of 
ourse, this quantity is just the dire
tional derivative of R(x) if the fun
tionis smooth, but our plan is to travel along the edges of RD(S), where dire
tionalderivatives of R(x) do not exist. Therefore, we de�ne the lateral dire
tional deriva-tive Dv+R(x0) = lim�!0+ R(x0 + �v) �R(x0)� = 
osnv � 
os fv:The algorithm follows the idea of lo
al optimization but, instead of moving alongthe dire
tion of steepest des
ent of the fun
tion, we move along the edge of RD(S)whi
h minimizes Dv+R until a new vertex of the roundness diagram is rea
hed.Be
ause we do not 
ompute RD(S) expli
itly, in ea
h step we have to 
omputethe edges of the diagram starting at the given vertex and the derivative of thefun
tion in the dire
tion of ea
h edge. We shall see that if x0 is a lo
al minimum ofthe roundness fun
tion, Dv+R is minimized when v is the dire
tion of an edge ofRD(S) (in this 
ase, the minimum is bigger than zero), but this is not ne
essarilythe 
ase if x0 is not a lo
al minimum. Therefore, instead of 
hoosing the dire
tionof steepest des
ent and pro
eeding along a dire
tion whi
h is not an edge of RD(S),we prefer to keep traveling on the diagram and take advantage of the dis
rete natureof the problem. In this way, in ea
h step we advan
e \as mu
h as we 
an" and thevalue of the fun
tion always de
reases. Although the algorithm works for arbitrarydimensions, in the rest of the paper we 
on
entrate on d = 2 and d = 3, whi
h arethe 
ases of pra
ti
al interest in toleran
ing metrology appli
ations.
12



The algorithm is extremely simple and 
an be des
ribed as follows:Input A set of points S and a nominal 
enter 
.Output A lo
al minimum of R(x).beginStep 1 From 
, move to a vertex of RD(S).General step While the vertex is not a lo
al minimum, 
ompute the in
identedge of RD(S) whi
h minimizes Dv+R and move to the otherin
ident vertex.endStep 1 
an be trivially performed in O(n) time and, be
ause we do not 
omputeany Voronoi diagram, ea
h iteration of the General step also takes linear time.Therefore, the worst 
ase 
omplexity of the algorithm is O(Kn), where K is thenumber of verti
es of the roundness diagram that are visited during the pro
ess.For d = 2, K = �(n2), leading to a 
ubi
 algorithm, and the 
omplexity is bigger ford = 3. However, in the experiments that will be presented in the next se
tion we
an see that K grows very slowly with n and thus the 
omplexity of the algorithm\in pra
ti
e" is 
lose to linear.In the rest of this se
tion, we study 
onditions that guarantee that the lo
alminimum that we rea
h with the algorithm is the global minimum of the fun
tion.We are going to look more 
losely at the lo
al minimum 
on�gurations to showthat 
ases that allow another nearby lo
al minimum are very unlikely to be en
oun-tered in pra
ti
e. More importantly, the 
onditions 
an be 
he
ked on
e the lo
alminimum has been rea
hed in order to guarantee that we have found the globalminimum of the problem.We are going to make two assumptions on the input:(A1) S � A(O; 1� Æ; 1 + Æ) for Æ = 0:05.(A2) There is at least one point of S inside any 
one with apex at O and angle� = �=5.Assumption (A1) is analogous to (C1) for the Restri
ted Roundness Problemand assumption (A2) is similar to (C2) and prevents \big holes" in the set S. Byusing the same ideas as in the proof of Lemma 1, it 
an be shown that the lo
alminimum found by the algorithm is inside B(O; 0:1). If we identify Sd�1 with theset of unitary ve
tors in Rd, a suÆ
ient 
ondition for the lo
al minimum foundby the algorithm to be the global minimum of the problem 
an be stated in thefollowing way:Theorem 6 Let x0 2 B(O; 0:1) be a lo
al minimum of R(x) and denote R(x0) = 
.We de�ne m = minv2Sd�1Dv+R(x0) = minv2Sd�1(
osnv � 
os fv):13



If m > 
2, then x0 is the global minimum of R(x).Proof. We observe that from the 
hara
terization of the lo
al minima of theroundness fun
tion, we have m > 0. Furthermore, R(x0 + �v) > R(x0) for � > 0small enough. We are going to show that this inequality holds for any � > 0 ifm > 
2.Let pn and pf be, respe
tively, the nearest and furthest neighbors of x0 deter-mining the angles nv and fv with v and 
onsider R�(x0 + �v) = d(x0 + �v; pf )�d(x0 + �v; pn). We observe that R(x0 + �v) � R�(x0 + �v).If we denote by r the inner radius of the annulus, the non-zero solution of theequation R�(x0 + �v) = R(x0)is �0 = 2 r 
(r + 
)(
osnv � 
os fv)
2 � (
 
os fv � r(
osnv � 
os fv))2 : (2)Be
ause the numerator of (2) is always positive we have that, if �0 is positive,�0 � 2 r(r + 
)
 (
osnv � 
os fv) � 2 r�1 + r
 �m > 2r
(r + 
): (3)Therefore, we haveR(x0 + �v) � R�(x0 + �v) > 
 = R(x0) if 0 < � � 2r
(r + 
):On the other hand, from assumption (A2) and following the same idea as in theproof of Lemma 1, if we denote K = 
os(�=10) then we 
an writeR(x0 + �v) � pr2 + �2 + 2�rK �p(r + 
)2 + �2 � 2�rK:Therefore, (R(x0 + �v))2 � 
22 � A�Bwhere A = r2 + �2 + 
rB = �(r2 + �2)2 � 4�2r2K2 + 
(2r + 
)(r2 + �2 + 2�rK�1=2:A straightforward 
omputation shows thatA2 �B2 � ��(7r22 � 
2)�� (4r + 2
)
r� = �E1(�):Be
ause E1(�) in
reases with �, in order to show that A� B � 0 if � > 2r2
, it isenough to see thatE1(2r2
) = r
�7r3 � (4 + 2
2)r � 2
� = r
E2(
) � 0;and this follows from the fa
ts that E2(
) de
reases with 
 and thatE2(0:1) = 7r3 � 4:02r� 2 � 014
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Fig. 5. Illustration for the proof of Proposition 1.be
ause r > 0:85. �In order to get a geometri
 interpretation of minv2Sd�1 Dv+R(x0) (and to 
om-pute it easily), we prove the following:Proposition 1 If x0 is a lo
al minimum of R(x), then minv2Sd�1 Dv+R(x0) isa
hieved when v is the dire
tion of an edge of the roundness diagram of S in
identto x0.Proof. Without loss of generality, we 
an assume that x0 is the origin of the
oordinate system. First, we 
onsider the 
ase d = 2. If v is not parallel to an edgeof the roundness diagram in
ident to x0, then there is a unique point pn 2 N(x0)determining an angle nv with v (as in Figure 5.a) and analogously for pf and fv.Therefore, we 
an slightly move v towards pnpf thus de
reasing 
osnv � 
os fv.For d = 3, if v is not parallel to a fa
e of the roundness diagram in
ident to x0,then we 
an repeat the argument of the previous paragraph. Finally, assume thatv is parallel to a fa
e but not to an edge of the roundness diagram in
ident to x0.Then, either v is parallel to the bise
tor plane of the points in F (x0) and is notparallel to the bise
tor plane of the points in N(x0), or the opposite. Assume thatwe are in the former situation, the latter one 
an be handled in an analogous way.In this situation, there are two points pf1; pf2 2 F (x0) determining an angle fvwith v and one point pn 2 N(x0) determining an angle nv with v. Let f1, f2 andn1 be the proje
tions of pf1, pf2 and pn, respe
tively, on the unit sphere 
enteredat x0 (see Figure 5.b). Then, v is 
onstrained to the maximal 
ir
le C de�ned bythe interse
tion of the plane x � f1f2 = 0 with the unit sphere. Let �� denote the
ir
le interse
tion of the plane x � f1
1 = �with the unit sphere. Be
ause x0 is a lo
al minimum,
osnv � 
os fv = v � f1
1 = �0 > 0and furthermore ��0 interse
ts (or is tangent to) C and grows when �0 diminishes,we 
an 
on
lude that v is not a lo
al minimum of Dv+R(x0). �15
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Fig. 6. x0 is a lo
al minimum but the global minimum is x1.It is worth noting that this result is not true if x0 is not a lo
al minimum.In these 
ases, the minimum of Dv+R(x0) 
an be determined by only two points.Therefore, the dire
tion of steepest des
ent of the fun
tion does not always 
oin
idewith an edge of the roundness diagram, and the proposed algorithm is not equivalentto the 
lassi
al lo
al optimization approa
h.We 
an see now why lo
al minima of the roundness fun
tion of almost roundsets whi
h are not the global minima are unlikely to be en
ountered in pra
ti
e.If x0 is a lo
al minimum of the roundness fun
tion and the set is almost round,Theorem 6 and Proposition 1 state that x0 
an only fail to be the global minimumof the fun
tion if there exists an edge of the roundness diagram in
ident to x0 withdire
tion v and su
h that nv ' fv. Then, it is ne
essary that:{ For d = 2 we have three out of the four points de�ning the lo
al minimum nearthe boundary of a 
one and, therefore, two points of the lo
al minimum 
on-�guration are \almost 
ollinear" with x0. In Figure 6, x0 is a lo
al minimumwith points p1, p2, q1 and q2 on the boundary of the annulus (they alternateangularly) but the global minimum is x1 and points on the boundary of theglobally optimal annulus are p1, p3, q1 and q3.{ For d = 3 we have four out of the �ve points de�ning the lo
al minimum nearthe boundary of a 
one and, therefore, there are four \almost 
oplanar" pointsin the 
on�guration de�ning the lo
al minimum.6. Experimental ResultsWe have done experiments with two kinds of input data:{ For d = 2, with some data provided by the National Institute of Standardsand Te
hnology (NIST) whi
h imitates a variety of error patterns that o

urin pra
ti
e. 16



Set wn w (wn � w)=w it. wa (wa � w)=wS1 0.017888 0.017811 0.00429 1 0.017929 0.00663S2 0.017744 0.017644 0.00567 1 0.017717 0.00418S3 0.001990 0.001975 0.00754 1 0.001986 0.00602S4 0.009976 0.009945 0.00317 2 0.010088 0.01443S5 0.006985 0.006666 0.04776 2 0.006933 0.04006S6 0.006959 0.006720 0.03557 6 0.006752 0.00477S7 0.017870 0.002009 7.89088 10 0.002114 0.05236Table 1. Results on data simulating frequent error patterns in metrology ap-pli
ations. Starting at the se
ond 
olumn we have the nominal width, the realwidth, the relative error, the number of iterations performed by the algorithm,the algebrai
 width of the set (de�ned below) and the relative error betweenalgebrai
 width and real width.{ Both for d = 2 and d = 3 with data randomly generated inside the annulusA(O; 1� e; 1 + e) for e = 10�i and i = 1; 2; 3; 4.Table 1 shows the results of the �rst experiment. S1; : : : ; S7 are samples of800 points with nominal 
enter at the origin and nominal radius 1. In the se
ond
olumn we have the nominal width, i.e. wn = R(O), and in the third 
olumnthe lo
al minimum obtained for the algorithm starting at the nominal 
enter. Inall these 
ases, the 
omputed lo
al minimum 
an be guaranteed to be the globalminimum of the fun
tion by a dire
t appli
ation of Theorem 6. The fourth 
olumnshows the relative improvement over the nominal width and the �fth the numberof iterations of the algorithm (i.e. the number of verti
es of the roundness diagramthat are visited during the pro
edure). If a good 
hoi
e of the nominal 
enter hasbeen made (S1; : : : ; S4), then already the �rst or the se
ond vertex of the roundnessdiagram is the solution to the problem. Only when a very poor 
hoi
e of the nominal
enter is made (S7) the number of iterations grows a little bit. Finally, the sixth
olumn shows the algebrai
 width of the set, whi
h is an alternative measure usedin industry. For 
omputing the algebrai
 width, we minimizenXi=1((d(X; pi))2 � r2)in the variables (X = (x; y); r), whi
h 
an be transformed into a linear least squares�t. Now, if Xa is the algebrai
 
enter (solution to the problem), the algebrai
 widthis wa = R(Xa). We 
an see in the table how poor this solution 
an be (in some
ases, even worst than the nominal width). Finally, it is worth noting that, in allthese 
ases, the minimum area annulus is exa
tly the same as the minimum widthannulus.For the randomly generated data, we have 
omputed the average of 20 iterationsof the algorithm for sets of 500; 1000; 2000; : : : ; 10000 points. As a starting pointfor the algorithm, we have 
hosen a random point x 2 B(O; 0:1) with the aimof measuring the 
omplexity of the roundness diagram in a neighborhood of thesolution (if the origin is 
hosen as a starting point, the number of the iterations17
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pointsFig. 7. Number of iterations for randomly generated data (d=2).does not seem to grow with n). The results are shown in Figure 7 and Figure 8 ford = 2 and d = 3 respe
tively.As should be expe
ted, the number of iterations grows with the dimensionand also if the nominal width of the sample diminishes. However, the behavioris 
learly sublinear and, therefore, the performan
e of the algorithm in pra
ti
e issubquadrati
.
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on
lude with some dire
tions of resear
h suggested by the work:� The te
hniques used in this paper 
ould be extended to deal with sets in theshape of a 
ir
ular ar
 or a spheri
al 
ap.� The main drawba
k of the minimum width annulus is that it is very sensitive to18



errors in the data. Therefore, it would be very interesting to try to generalizethis work to 
ompute the thinnest annulus 
ontaining all but k of the points,where k is small, in the same way that it has been done in13 for LP-typeproblems.� If we take into a

ount some un
ertainty in the measurements, the obje
tive isto 
ompute the thinnest annulus 
ontaining a given set of disks. If the radiusof the disks are small 
ompared with the width of the annulus and they donot interse
t, the approa
h proposed in the paper should also be useful.� Try to generalize this approa
h to other problems in Toleran
ing Metrology,like measuring 
atness of almost 
at sets, 
ollinearity of almost 
ollinear pointsor 
ir
ularity of almost 
ir
ular sets in the spa
e.A
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