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Abstract

In this paper we study the separability in the plane by two criteria: double wedge separability
and Θ-separability. We give an O(N log N)-time optimal algorithm for computing all the vertices
of separating double wedges of two disjoint sets of objects (points, segments, polygons and circles)
and an O((N/Θ0) log N)-time algorithm for computing a nearly-straight minimal Θ-polygonal
chain separating two sets of points, where Θ0 is a value which depends on the position of the
points.

1 Introduction

Let B and R be two disjoint sets of objects in the plane which we denote as blue and red objects,
respectively. The objects we consider are points, segments, polygons and circles. When the objects
are polygons we use n and m for the total number of edges of the polygons in B and R, respectively;
otherwise n and m are simply the number of objects in B and R. In any case N = max{n,m}.

We say that a set C of curves in the plane separates B from R when every cell of the arrangement
induced by C contains objects only from B or from R. Deciding whether the sets B and R can be
separated by means of a single line (a hyperplane in any constant dimension) can be done in O(N)
time, which is optimal [12, 13]; this is linear separability, which is the simplest kind of geometric
separation. The problem of finding the convex polygon with fewest edges separating two point sets
in the plane (when this is possible) is solved in [9] in O(N log N) time. Circular separability in
the plane can be reduced to linear separability in three dimensions after lifting the points to the
unit paraboloid, yet an optimization problem arises, consisting of computing the largest separating
circle [4, 5]

Several additional ways of separating two sets have been considered, often trying to use sep-
arators conceptually close to the ideal linear separability. In [10] it was proven that finding a
polygonal-chain separator with fewest edges (the minimum-link red-blue separation problem) is
NP-complete. The separation by means of two rays with common apex (wedge separability) or by
two parallel lines (strip separability) is studied in [11]. Both kinds of separability can be decided
in optimal Θ(N log N) time, and when the answers are affirmative, the wedges with maximum or
minimum angle, and the narrowest and widest strip, can be obtained within the same time bound.
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In this paper we study the separability by means of two lines, and by means of a single polygonal
chain having a “special simplicity”, as defined more precisely next (Figure 1):

Definition 1. Two disjoint sets of objects B and R are two lines separable or double wedge
separable if there exist two straight lines intersecting at a point p, the vertex of the double wedge,
such that there is a non-trivial partition {B1, B2} of B and a non-trivial partition {R1, R2} of R
such that B1, R1, B2 and R2 appear angularly in this order in the four wedges produced by the two
lines.

We consider non-trivial partitions for B and R because otherwise double wedge separability is
a special case of wedge separability which can be detected directly with the algorithms in [11]. We
use the term double wedge as in [8], page 362 (Figure 1a). Thus, two intersecting lines define two
complementary double wedges. According to this terminology, the sets B and R are double wedge
separable if, and only if, there exist two complementary double wedges such that one contains all
the red points, the red double wedge, and the other contains all the blue points, the blue double
wedge (Figure 1b). We also say that the red double wedge is the union of two opposite red wedges;
opposite blue wedges are defined analogously from the blue double wedge.

Definition 2. A Θ-polygonal chain is a polygonal chain such that all of its vertices have angle Θ
and it turns alternately left and right. Two disjoint sets of objects B and R are Θ-separable if there
exists a Θ-polygonal chain separating B and R.
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Figure 1: a) Double wedge, b) double wedge separability, c) Θ-separability.

In Section 2 we show that the double wedge separability of two disjoint point sets can be decided
in O(N log N) time, and the algorithm allows the construction of the region formed by the vertices
of the separating double wedges. The algorithm is optimal because an Ω(N log N) lower bound for
the decision problem is shown in [1], and can be extended to objects other than points.

In Section 3 we study the Θ-separability of two disjoint point sets in the plane. We observe
that two given sets B and R can always be separated by a Θ-polygonal chain for Θ small enough.
However, we are interested in maximizing the angle because the closer to π is the better approx-
imation to linear separability. We have obtained O((N/Θ0) log N) time algorithms for computing
separating Θ-polygonal chains with the maximum angle, where Θ0 is a value which depends on the
position of the points and, among these, one with the minimum number of edges.

Many other variations on these problems are systematically studied in [14].
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2 Double wedge separability

Let B and R be two disjoint point sets in the plane, both of them in general position. This
assumption is not essential for our algorithms to work, but handling degeneracies would require
the description of many details and would hide the crucial ideas. We also assume hereafter that no
double wedge separator, if there is any, has an empty wedge, because this situation is a special case
of wedge separability which can be detected directly with the algorithms in [11]. Given a double
wedge ω with vertex at p and separating B and R, the plane is decomposed into two complementary
double wedges with vertex p, the red double wedge and the blue double wedge, with aperture angles
denoted by αr and αb, respectively. We say that a direction is red (blue) if the line through p in
that direction is contained in the red (blue) double wedge (the boundary lines get both colors).
Because αr + αb = π, either αr ≤ π/2 or αb ≤ π/2. Without loss of generality, we assume hereafter
that αr ≤ π/2, hence either the vertical direction is blue or the horizontal direction is blue (or
both).

Let Ω be the (possibly empty) set of double wedges separating B and R such that αr ≤ π/2
and the vertical direction is blue. We show in the rest of this section how to compute the locus of
vertices of double wedges in Ω; the total set of all possible vertices of double wedges separating B
and R can be computed repeating the process for the rest of the cases.

Observe that any direction defined by two red points in opposite red wedges is a red direction;
we can always get one by picking the red points with minimum and maximum abscissa. For that
direction, we relabel the points in such a way that {r1, r2, . . . , rm} is monotone in that direction and
{b1, . . . , bn} is monotone in the perpendicular direction, which is necessarily blue because αr ≤ π/2.
After this relabelling, we immediately get:

Lemma 1. The wedge partition produced by ω ∈ Ω is given by B = {b1, . . . , bi}∪{bi+1, . . . , bn} and
R = {r1, . . . , rj} ∪ {rj+1, . . . , rm} for some i = 1, . . . , n − 1, j = 1, . . . ,m − 1.

According to the above considerations, for a given input we always start by taking the direction
defined by the red points with minimum and maximum abscissa and change the coordinate system
for this direction to be horizontal and relabel the red points by increasing abscissa and the blue
points by decreasing ordinate. We assume in what follows that this step has already been done.

Computing feasible partitions

In order to compute feasible partitions for B and R into monochromatic opposite wedges, we
consider the monotone polygonal chains PB , with vertices {b1, . . . , bn} and PR, with vertices
{r1, . . . , rm}. Each edge of a polygonal chain induces a partition in the corresponding set given by
the vertices of the two chains that appear when the edge is removed.

Lemma 2. If Ω �= ∅, then there exist two edges er ∈ PR and eb ∈ PB such that (PR � er)∩ (PB �

eb) = ∅. Furthermore, at least one of the following statements holds:

(1) There exists exactly one edge er ∈ PR having more than one intersection with PB. In this
case, all the double wedges of Ω separate R in the components induced by er.

(2) There exists exactly one edge eb ∈ PB having more than one intersection with PR. In this
case, all the double wedges of Ω separate B in the components induced by eb.

(3) PR and PB intersect in one point, er ∩ eb. In this case, all the double wedges of Ω separate
B or R (and maybe both) in the components induced by eb and er, respectively.
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Proof. The first claim follows immediately from Lemma 1 observing that, if the partition given by
a double wedge ω is B = {b1, . . . , bi}∪{bi+1, . . . , bn} and R = {r1, . . . , rj}∪{rj+1, . . . , rm}, then the
polygonal chains {b1, . . . , bi}, {bi+1, . . . , bn}, {r1, . . . , rj} and {rj+1, . . . , rm} do not intersect each
other. For the second claim, regarding the number and position of the intersections, we observe
that there is at most one edge in each polygonal chain having more than one intersection and that,
if all the edges have at most one intersection, then there is only one intersection between PR and
PB because the number of intersections between the polygonal chains is odd (Figure 2). Finally,
in case (1), as the lines that form the double wedge ω ∈ Ω cannot intersect the chains obtained by
removing the edge er, ω must separate R precisely in the components induced by er; the other two
cases are argued similarly.
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Figure 2: PB and PR.

Let us observe that if Ω �= ∅, then PB and PR intersect a linear number of times and, therefore,
we can use a standard algorithm [3, 6] for computing segment intersections in order to compute
candidate partitions of the sets in O(N log N) time. Moreover, we observe that Lemma 2 implies
that there is at most one candidate partition for one of the sets and, therefore, there are O(N)
candidate partitions.

Assume that we have a candidate partition R = {R1, R2} induced by the edge rjrj+1 ∈ PR,
i.e., R1 = {r1, . . . , rj} and R2 = {rj+1, . . . , rm}. For i = 1, . . . , n − 1, let Bi = {b1, . . . , bi} and
B′

i = {bi+1, . . . , bn} be the bipartition of B induced by the edge bibi+1 of PB . A necessary condition
for the existence of a double wedge separating B and R is that the sets R1, R2, Bi and B′

i are
pairwise linearly separable. We show next how to compute the tentative partitions fulfilling this
condition, assuming that CH(R1) and CH(R2) have already been pre-computed.

Lemma 3. For a fixed partition R = {R1, R2} of PR, the list LB of indices i such that R1, R2, Bi

and B′
i are pairwise line separable can be computed in O(n log m) time.

Proof. We compute first the indices i such that Bi is line separable from R1 and R2. Obviously,
if Bi is not line separable from R1 and R2 then the same is true for Bi+k, for k ≥ 1. If Bi is
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line separable from R1 and R2, then the linear separability of Bi+1 can be decided by computing
the lines of support of CH(Bi) from bi+1, taking the segments from bi to the contact points, and
checking whether they intersect or not CH(R1) and CH(R2). This can be done in O(log m) time,
therefore the list of indices i such that Bi is line separable from R1 and R2 can be computed in
O(n log m) time. Within the same time bound, by processing the points from bn to b1, the sets B′

i

which are line separable from R1 and R2 can also be computed. Finally, LB , i.e., the list of indices
i such that both Bi and B′

i are line separable from R1 and R2 can be obtained from the two lists
in O(n) additional time.

Lemma 4. For an index i ∈ LB the set of vertices of double wedges separating R and B according
to the partition R1, R2, Bi and B′

i is a (possibly degenerate) quadrilateral which can be computed
in O(log N) time if the convex hulls CH(R1), CH(R2), CH(Bi) and CH(B′

i) are given as part of
the input as structures allowing binary search.

Proof. A point p is a vertex of a double wedge separating R1, R2, Bi and B′
i if, and only if, p is

the intersection point of two lines l1 and l2, where l1 separates CH(R1 ∪ Bi) from CH(R2 ∪ B′
i)

and l2 separates CH(R1 ∪ B′
i) from CH(R2 ∪ Bi).

The locus of points swept by lines separating two convex polygons is bounded by two concave
chains defined by edges of the polygons and by the separating common supporting lines (Figure 3).

.......................................................................

Figure 3: Two concave chains that bound the region of separating lines.

When the two polygons are CH(R1 ∪Bi) and CH(R2 ∪B′
i), let C1i be the chain which contains

edges from CH(R1 ∪Bi) and let s1i the only edge in C1i that is crossed by lines separating R1 and
Bi.

We denote by h1i the half-plane bounded s1i which contains CH(R1 ∪ Bi); h2i, h′
1i and h′

2i are
defined analogously (Figure 4). The set of vertices of double wedges separating R1, R2, Bi and B′

i

is h1i ∩ h2i ∩ h′
1i ∩ h′

2i. As the four half-planes can be computed in O(log N) time, the claim is
proved.

The computation in the above lemma has to be performed for every i ∈ LB. CH(R1), CH(R2)
are given and CH(Bi) and CH(B′

i) can be maintained by mimicking the incremental construction
of CH(B) from left to right and reversely, giving an overall running time of O(n log n).

The previous lemmas combine into the following result:

Theorem 1. Let B and R be two disjoint sets of points in the plane. The region of vertices of
double wedges separating B and R can be computed in O(N log N) time.

The above algorithm for computing a description of all the separating double wedges is optimal
as an Ω(N log N) lower bound for the decision problem of double wedge separability has been shown
by Arkin et al. in [1].
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There are at most n + m − 2 combinatorially different ways of separating R and B by means
of double wedges, because it can be shown that there are solutions for at most one red partition
combined with n− 1 different blue partitions and one blue partition combined with m− 1 different
red partitions. We omit the proof here, it can be found in [14].

2.1 Double wedges with maximum and minimum aperture angle

By aperture angle of a double wedge we mean max{αr, αb}, αr + αb = π. According to this
definition, the values of the maximum and the minimum aperture angle are in between π/2 and π.

• Maximum aperture angle: Let l1 and l2 be two lines defining a double wedge for the
partition R1, R2, Bi and B′

i. Let α be the aperture angle of the two lines. Now fixing the
line l1, we rotate the line l2 adequately increasing the angle α until l2 becomes a separating
common supporting line l′2 between CH(R1∪B′

i) and CH(R2 ∪Bi) (Figure 5). Let α1 be the
aperture angle of the two lines l1 and l′2. Then, fixing l′2, we proceed analogously with the line
l1 increasing the aperture angle α1 until l1 becomes a separating common supporting line l′1
between CH(R1 ∪ Bi) and CH(R2 ∪ B′

i) (Figure 5). Therefore it is clear that the maximum
aperture angle for a given double wedge partition of B and R corresponds to the maximum
aperture angle defined by separating common supporting lines; there are four possibilities
which can be computed in O(log N) time. To compute the total maximum aperture angle we
maintain the maximum aperture angle for the double wedge partitions of B and R.

• Minimum aperture angle: We distinguish between two cases: either the minimum aperture
angle is strictly greater than π/2 or the minimum aperture angle is exactly π/2. In the first
case, we can proceed analogously as in the case of maximum aperture angle but decreasing
the aperture angle defined by the two lines l1 and l2. Thus, the minimum aperture angle
for a given double wedge partition of B and R corresponds to the minimum aperture angle
of separating common supporting lines; there are four possibilities which can be computed
in O(log N) time. To compute the total minimum aperture angle we maintain the minimum
aperture angle for the double wedge partitions of B and R.

In the second case, assume that the minimum aperture angle π/2 is given by the perpendicular
lines l1 and l2. We can translate the two lines in parallel to themselves until they bump into
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Figure 5: Maximum aperture angle.

points in CH(R1), CH(R2), CH(Bi) or CH(B′
i); then we rotate the two lines simultaneously

over those convex hulls, maintaining the perpendicularity, until at least one of the two lines (or
both) becomes a separating common supporting line between CH(R1 ∪Bi) and CH(R2 ∪B′

i)
or a separating common supporting line between CH(R1 ∪ B′

i) and CH(R2 ∪ Bi). Now, in
order to check whether the minimum aperture angle for a given partition of B and R is exactly
π/2, we compute the four possible common supporting lines and for each one, l, we check
in O(log N) time whether there exists a line perpendicular to l forming a separating double
wedge. Once this is true for some double wedge partition of B and R, we can conclude that
the minimum aperture angle is exactly π/2. Therefore we obtain:

Proposition 1. If the sets B and R are double wedge separable, then the double wedges with
maximum and minimum aperture angle can be computed in O(N log N) time.

2.2 Separating segments by double wedges

Let SB and SR two disjoint sets of n and m segments in the plane classified as red and blue segments
respectively. As for points, we consider whether there exists a proper double wedge separating SB

and SR: each wedge contains only monochromatic segments and each wedge contains at least one
segment. The problem is not equivalent to the separability of the endpoints, because a blue wedge,
say, might be crossed by a red segment with endpoints on the opposite red wedges. We again look
for a separating double wedge where the vertical direction is blue; other cases are handled similarly.

As a first step we consider the double wedge separation of the blue and red sets of endpoints.
Suppose that the red endpoints are sorted by x-coordinate and that the blue endpoints are sorted
by y-coordinate. We construct the red and blue polygonal chains joining endpoints as we did for
sets of points. Only edges of the red polygonal chain, bridging red segments in such a way that
their vertical projection does not overlap projections of any red segments, have to be considered as
candidates for defining a red partition. We call these edges critical red bridges (Figure 6). Critical
blue bridges are similarly defined. The algorithm for point sets can now be used for solving the
problem, but the computation is only required for partitions Bi and B′

i corresponding to critical
blue bridges.

Theorem 2. Let SB and SR be disjoint sets of segments in the plane. Whether they are double
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Figure 6: Double wedge for segment sets, the dashed segments are the critical red/blue bridges.

wedge separable can be decided in O(N log N) time. The locus of vertices of separating double wedges
and the separating double wedges with maximum and minimum aperture angle can be computed
within the same time bound.

Let us remark that this result also settles the separability by double wedges of sets of red and
blue polygons.

2.3 Separating circles by double wedges

We consider now the same problem for two disjoint sets CB and CR of n and m blue and red circles
of the plane respectively (Figure 7). We show next how to adapt to this case the algorithm for
segments.

Let b1, . . . , bn and r1, . . . , rm be the centers of the blue and red circles, after relabelling as we
did for points (in particular the x axis is the line passing through r1 and rm). Replace each circle
by its vertical and horizontal diameters in order to obtain as above critical red or blue bridges.
Once these critical edges are available, the circles are recovered, as hulls of their union have to be
incrementally maintained (as for points), which can de done in O(N log N) time using the algorithm
in [7]. Therefore we obtain:

Figure 7: Double wedge for sets of circles.
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Theorem 3. Let CB and CR be disjoint sets of circles in the plane. Whether they are double wedge
separable can be decided in O(N log N) time. The locus of vertices of separating double wedges and
the separating double wedges with maximum and minimum aperture angle can be computed within
the same time bound.

3 Θ-separability

When the sets B and R are not linearly separable we may be interested in finding a polygonal
chain separating the sets and satisfying some restrictions. The problem of computing a polygonal
separator with the minimum number of edges is NP-complete [10]. A simpler problem is the Θ-
separability problem, i.e., determining the separability by a polygonal chain that turns alternately
left and right with angle Θ, a Θ-polygonal chain. In particular, we are interesting in maximizing
the angle Θ of a separating Θ-polygonal chain because the closer to π is the better approximation
to linear separability; in fact, linear separability corresponds to π-separability .

It is easy to see that two point sets B and R are always separable by some Θ-polygonal chain
with angle Θ small enough. In fact, our first objective is computing an angle Θ0 such that we
can easily guarantee the existence of a Θ0-polygonal chain separating B and R because this is a
necessary step for our later addressing the problem of computing a Θ-polygonal chain separator
with maximum angle.

Computing a Θ0-polygonal chain separator

Let us consider Θ-polygonal chains such that the bisector of the angle Θ is a vertical half-line
pointing up and where the red points are above the polygonal chain.

We sort the (red and blue) points by x-coordinate. Without loss of generality we can assume
that there are no points with the same x-coordinate; otherwise, this can be easily achieved in
O(N log N) time by rotating the coordinate system.

For every red point ri let si the upwards vertical ray with origin at ri. We compute an angular
value as follows:

1. Let Ub be the upper convex hull of the blue points, having b1 and bn as leftmost and rightmost
points, respectively.

2. If a red point ri is below Ub, let us consider the intersection points u and v of the vertical
lines through the previous and next blue points with Ub. Let θi1 (θi2) be the angle defined by
the rays si and −→riu (−→riv) (Figure 8).

3. If ri is not below Ub we rotate counterclockwise si until either we hit a blue point or the
angular value π/2 is reached; we set θi1 to be this angle of rotation. The value of θi2 is
similarly defined.

4. Let Θ0 = 2min{θ11, θ12, . . . , θm1, θm2}.
Clearly the vertical wedge with apex at ri, symmetry axis si and aperture angle Θ0 is empty

of blue points, for every ri. Therefore the lower envelope of all this wedges is a Θ0-polygonal chain
separating B and R. This envelope can be computed by divide and conquer, hence we obtain the
following result:

Proposition 2. Any two disjoint point sets B and R in the plane are Θ0-separable by some Θ0-
polygonal chain, and one such separator can be constructed in O(N log N) time.
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Figure 8: Computing Θ0.

3.1 Computing a separating Θ-polygonal chain with maximum Θ

A fundamental tool for solving this problem is Theorem 4 by Avis et al. about the computation of
the so-called unoriented Θ-maxima points of a planar point set S.

Definition 3. A ray from a point p ∈ S is called a maximal ray if it passes through another point
q ∈ S. A cone is defined by a point p and two rays C and D emanating from p (Figure 9).

Definition 4. A point p ∈ S is an unoriented Θ-maximum with respect to S if, and only if, there
exist two maximal rays, C and D, emanating from p with an angle at least Θ between them so that
the points of S lie outside the (Θ-angle) cone defined by p, C and D (Figure 9).

≥ Θ
p

C

D

Figure 9: Unoriented Θ-maximum.

Theorem 4. [2] Let S be a set of n points in the plane. All unoriented Θ-maxima points of S for
Θ ≥ π/2 can be computed in O(n log n) time and O(n) space. For angles Θ < π/2 the Θ-maxima
points of S can be computed in O((n/Θ) log n) time. The algorithm is optimal for fixed values of
Θ.

The π/2 constant of the theorem can be substituted by an arbitrary Θ0 > 0 without changing
the asymptotic complexity of the algorithm as a function of n.

The reason for the above results to be crucial for us comes from the observation that if there
is a Θ-polygonal chain separating B from R, then all the points in R are “maximal” in the sense
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that all them are apices of wedges of aperture Θ, with sides parallel to the edges in the separator,
and free of points from B (Figure 10).

Θ

Figure 10: All the red points are unoriented Θ-maximum with respect to B.

First of all we adapt to the bichromatic situation the definition of unoriented Θ-maximum of a
set of points.

Definition 5. Let B and R be disjoint sets of blue and red points in the plane. A point r ∈ R is
an unoriented Θ-maximum with respect to B if, and only if, there exist two maximal rays, C and
D, emanating from r and with an angle at least Θ between them so that no points from B lie inside
the (Θ-angle) cone defined by r, C and D (Figure 11).

≥ Θ
p

C

D

Figure 11: Unoriented Θ-maximum with respect to B.

With this definition it is clear that once we have computed a Θ0-polygonal chain as in Propo-
sition 2 then all the red points are unoriented Θ0-maxima with respect to B. Now, we want to
compute the maximum angle Θ ≥ Θ0 such that all the red points are unoriented Θ-maxima with
respect to B. As we are making heavy use of the result and algorithm mentioned in Theorem 4,
for the sake of clarity we sketch next the two basic steps of that algorithm:

• Procedure Candidates: the input is a planar point set S and an angle β; the output gives
the list of edges of the convex hull of S, CH(S), together with a list of the candidate points
for each edge. A point p is a candidate for the edge e = xy ∈ CH(S) if the angle between
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the rays −→px and −→py is not smaller than β. Notice that if β is less than π/2, the output of this
procedure can have size Ω(n/β).

• Procedure Unoriented-Maxima: the input is the list of candidates for every edge e of
CH(S); the output is the list of unoriented β-maxima points that are apices of wedges that
have bounding rays crossing e and aperture angle at least β. For every such maximal point p
the output also contains the two rays Lp and Rp defining the widest empty wedge from p. Let
Rp,e be the ray which is perpendicular to e and has origin at p. For β ≥ π

2 , ray Rp,e must be
between Lp and Rp; the procedure sorts the candidate points by their orthogonal projection
onto e, and then does two sweeps by lines perpendicular to e, utilizing an incremental convex
hull computation, yielding the rays Lp and Rp as a by-product (Figure 12). In case that
β < π

2 , the angle between Lp and Rp must contain Rp,e or one of the π
β − 2 directions which

are separated from Rp,e by integer multiples of β and the above procedure is executed (π
β −1)

times, one for each such direction, giving an overall O((N/β) log N) running time.

p

Lp

....
....
....
....
....
....
....

Rp

�

�

CHL,p

CHR,p

Rp,e

e

x

y

Figure 12: Computing unoriented Θ0 maxima from candidates.

Remember that all the red points are unoriented Θ0-maxima with respect to B, for the value
Θ0 previously obtained according to Proposition 2. The algorithm for computing a separating Θ-
polygonal chain with maximum Θ has two main parts. First, the algorithm from [2] we have just
described is adapted to obtain for every red point r all the maximal wedges with apex at r that
make r Θ0-maximum with respect to B. The output is used in the second part for the maximization
of the angle Θ in any separating Θ-polygonal chain.

Procedure Θ-Polygonal-Chain
Input: B, R, Θ0,
Output: A separating Θ-polygonal chain with maximum Θ = ΘM .

1. Compute CH(B), let {e1, . . . , el} be the sorted list of edges of CH(B). Classify the red points
into RI and RE , where RI are those that are interior to CH(B) and RE are those that are
exterior or on the boundary of CH(B).

2. For points in RI : run the algorithm of Theorem 4 [2] on B ∪ RI to find the maximum angle
Θ ≥ Θ0 such that all the points from RI are unoriented Θ-maxima with respect to B.

Procedure Candidates on B∪RI gives the list of points from B∪RI that are candidates for
each edge of CH(B). A point can be a candidate for a constant number of edges: if Θ0 ≥ π

2
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for at most three edges, if Θ0 < π
2 for at most 2π

Θ0
. Notice that if Θ0 is less than π/2, the

output of this procedure can have size Ω(n/Θ0).

Procedure Unoriented-Maxima above is modified in such a way that the double sweep
computes incrementally the blue convex hull which is maintained in a structure allowing loga-
rithmic dynamic maintenance when a blue point is encountered and support line computation
when a red point is found. The output is the list of red points that are unoriented β-maxima
with respect to B for some β ≥ Θ0 and all wedges that have them as apices, aperture angle
at least Θ0 and are free of blue points. The procedure is executed ( π

Θ0
− 1) times for each

edge, which gives an overall O((N/Θ0) log N) running time.

3. For points ri ∈ RE ∪B, we proceed as in step 2 and in addition compute the rays from ri that
support CH(B), because the external angles βi they define (always greater or equal than π)
are also making these points unoriented maxima (Figure 13).

...........................................

.....
......

......
......

...

............................................
....
....
....
....
.....
...
...
...
...
..........

..............
..........

ri

βi

.....
...
...≥ Θ0

Figure 13: External angle βi for a point ri ∈ RE.

4. For each red point we have a constant number of at most 2π
Θ0

+1 angular windows making the
point maximal with respect to B and aperture angle at least Θ0. We place these values as
arcs on a circle which has been drawing using several concentric circles, for clarity (Figure 14).
The intersection of the arcs (or angular intervals) can be easily obtained in O(N log N) time
and we get a constant number of angular intervals with apertures θi ≥ Θ0 making all red
points maximal. Let ΘM be the maximum of the angles. Notice that ΘM might appear
several times, at most a constant number k. Let {I1, . . . , Ik} be these ΘM -size intervals. We
describe each Ii by the direction di of its bisector, obtaining a constant number of directions
{d1, . . . , dk}.

5. We construct a ΘM -polygonal chain for d1 in O(N log N) time analogously as we did in
Proposition 2. (Polygonal chains for all d1, d2, . . . , dk may be constructed within the same
time.)

The correctness of the procedure follows from the preliminary lemmas; the O((N/Θ0) log N)
running time dominates the steps and we can state the following theorem:

Theorem 5. Given two disjoint point sets B and R in the plane, the computation of a separating
Θ-polygonal chain with maximum Θ = ΘM can be achieved in O((N/Θ0) log N) time.

Remark. Notice that the complexity of the preceding algorithm depends on the parameter Θ0,
which unfortunately might be very small as it depends on the particular point sets. However, if
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Figure 14: Angular intervals and directions of Θ-polygonal chains.

one is interested only in checking whether the Θ-separability of the two point sets is “close” to
π-separability in a precise sense, the preceding approach can be slightly modified while achieving
an O(N log N) running time.

Let us assume, for example, that we are interested in checking whether 2π/3-separability is
achievable or not, and only in the affirmative we would look for ΘM . Now, if the answer is
positive, at least one of the four values of the parameter Θ0 obtained by executing the algorithm in
Proposition 2, in the four directions of the coordinate axis (positive and negative) must be greater
than 2π

3 − π
2 . This condition can be checked in time O(N log N), and only when fulfilled we would

run the algorithm leading to theorem 5, with complexity O(N log N).

3.2 Maximum angle and minimum number of vertices

As we have seen in the preceding subsection we might have more than one separating Θ-polygonal
chain with maximum Θ = ΘM . A natural problem is to require additionally the number of vertices
to be minimized. This is the problem we address now; the solution will be called the max-angle
min-vertex polygonal chain.

From the previous algorithm we have a constant number of directions {d1, . . . , dk} correspond-
ing to the bisectors of different solutions (in the sense that they correspond to different angular
windows). We show next how to solve the problem for one of them, the procedure is then repeated
for the other while keeping the best solution found.

Assume without loss of generality that d1 is the vertical direction. Let PΘM ,R be the separating
ΘM -polygonal chain with “valley” vertices on red points (Figure 15) obtained by applying the
construction from Proposition 2. Let PΘM ,B be the separating ΘM -polygonal chain with “top”
vertices on blue points (Figure 15) obtained by applying the construction from Proposition 2.

Notice that PΘM ,R and PΘM ,B do not cross but they have at least two edges overlapping, due
to the maximality of ΘM .

Lemma 5. There exists a separating ΘM -polygonal chain with minimum number of vertices (among
those having bisector d1) such that its edges lie alternately on PΘM ,R and PΘM ,B.

Proof. Let PM be a separating ΘM -polygonal chain with minimum number of vertices for the
direction d1, which will consist of two half-lines and a set of edges. Assume without loss of generality
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Figure 15: Minimizing the number of vertices.

that the leftmost half-line e from PM is parallel to the leftmost half-line in PΘM ,R: we “push” e,
with all its intermediate steps being parallel to the original position, until it touches PΘM ,R, then
the next edge is similarly pushed to PΘM ,B and so on. Notice that no edge of the current polygonal
chain can disappear during this process because of the assumption of initial minimality. In the end,
the resulting polygonal chain fulfills the conditions stated in the lemma.

The above Lemma provides the following greedy approach to find a separating ΘM -polygonal
chain with minimum number of vertices for the direction d1:

Greedy algorithm

1. Let e the left half-line of PΘM ,R.

2. Extend e in the sense of increasing abscissa until it hits PΘM ,B, then make a turn of angle
ΘM and extend an edge until hitting PΘM ,R and keep going until the extension of a growing
edge goes to infinity.

3. Repeat steps 1 and 2 for the other three extreme half-lines, and exit with the solution giving
the smallest number of vertices among these four possibilities.

We know that PΘM ,B and PΘM ,R can be constructed in O((N/Θ0) log N) time, and it is easy to
see that the final greedy algorithm requires only additional linear time. As this process is executed
a constant number of times (once per each bisector di), we can state the following theorem:

Theorem 6. Given two disjoint point sets B and R in the plane the max-angle min-vertex polygonal
chain separating the sets can be computed in O((N/Θ0) log N) time.

Remark. Notice that again the complexity of the preceding algorithm depends on the parameter
Θ0. However, if one is interested only in computing the max-angle min-vertex polygonal chain in
the sense of the remark above then, the time complexity of theorem 6 is O(N log N).

3.3 Lower bound

Avis et al. established an Ω(n log n) lower bound for the computation of the unoriented Θ-maxima
of a planar point set S, for π/2 ≤ Θ ≤ π [2]. We adapt next their construction to the computation
of the separating Θ-polygonal chain with maximum angle.
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Theorem 7. The problem of computing the Θ-polygonal chain with maximum Θ = ΘM separating
two disjoint point sets in the plane, with π/2 ≤ ΘM < π, has complexity Ω(N log N) under the
algebraic computation tree model.

Proof. We use a reduction from integer element uniqueness as in [2]; this problem has a lower
bound Ω(N log N) under the algebraic computation tree model as proved by Yao [15].

Let M = {x1, . . . , xN} be a set of integers. For each xi, we construct a red point (i + ε, (Nxi)2)
and five blue points (i + ε, (Nxi)2 + ε), (i + ε, (Nxi)2 − ε), (i − ε, (Nxi)2), (i − ε, (Nxi)2 + ε),
(i − ε, (Nxi)2 − ε), where ε = 1/4. Let R and B be the sets of red and blue points obtained by
union of these sets for i = 1, . . . , N .

............................................

...............................................
(Nxi)2

............................................

...............................................
(Nxi)2

i j

Figure 16: Situation for the case xi = xj .

If xi = xj then at least one red point out of the two red associated points is not a Θ-unoriented
maxima with respect to B (Figure 16). Hence, the sets R and B are not separable by any Θ-
polygonal chain with π/2 ≤ Θ < π because in that situation all red points would be Θ-unoriented
maxima with respect to B.

Conversely, if xi is unique in M , then the six points associated to xi are Θ-unoriented maxima
when the colors are disregarded, and the associated red point is Θ-unoriented maximum with respect
to B with an angle Θ, π/2 ≤ Θ < π having as bisector the direction �v = (−1, 0). Therefore if all
the xi are different then there is a separating Θ-polygonal chain with π/2 ≤ Θ < π and having as
bisector the direction �v = (−1, 0).

Hence all the elements xi’s in M are distinct if, and only if, there exists some separating Θ-
polygonal chain with π/2 ≤ Θ < π, and the claimed reduction is proved.
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